首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
By using the isothermal titration calorimetry (ITC) technique, thermodynamic parameters have been determined for reactions of the Mg2+, Ca2+, Sr2+, and Ba2+ ions with the citrate anion. The measurements were run in the Cacodylate, Pipes and Mes buffer solutions of a pH of 6, at 298.15 K, as well as in the Tricine, Tapso, and Tris–HCl buffer solutions of a pH of 8. Further, based on the results of potentiometric titration, the conditional stability constants were determined for the citrate complexes at both pH values. The effect of the reaction environment and the metal ion identity on the interaction energy with the citrate ligand and the stability of the resulting compounds have been discussed.  相似文献   

2.
Complex stability constants (K S), standard molar enthalpy changes (ΔH°) and entropy changes (TΔS°) for the inclusion complexation of native β-cyclodextrin (β-CD) (1) and some modified β-CDs, i.e., mono(6-ethylenediamino-6-deoxy)-β-CD (3), mono[6-diethylenetriamino-6-deoxy]-β-CD (4) and their corresponding copper complexes 5 and 6, with four representative bile acid guests, i.e., cholate (CA), deoxycholate (DCA), glycocholate (GCA) and taurocholate (TCA), were determined at 25 °C in aqueous phosphate buffer solution (pH 7.20) by means of isothermal titration microcalorimetry (ITC). The stoichiometry of resulting inclusion complexes between CDs and bile acids was demonstrated by UV and conductivity as well as ITC experiments, showing 1:1 binding model upon all inclusion complexation except for metal-mediated dimer 5. The complex stability constants for modified β-CD 24 are dramatically magnified with the extended length of amino tether. As compared with 3 and 4, copper(II) complexes 5 and 6 significantly enhance not only binding ability but also molecular selectivity toward bile guest molecule CA through multipoint recognition, but decreased complexes stability toward TCA could be attributed to the decreased hydrophobic microenvironment of CDs cavity due to the introduction of copper(II) coordination center. Thermodynamically, the resulting complexes between hosts and bile guests are driven absolutely by enthalpy, accompanied by entropy gain or loss. Using the present data and those previously reported for mono(6-amino-6-deoxy)-β-CD (2), thermodynamic behavior and enhanced molecular selectivity could be discussed from the viewpoint of hydrophobic interactions, electrostatic cooperation and van der Waals between the hosts and guests.  相似文献   

3.
The thermodynamic parameters of interaction between theophylline and Human Serum Albumin (HSA) in buffer solution (30 mM) of pH = 7 at 27 °C was investigated by isothermal titration calorimetry (ITC). The thermodynamic quantities of the binding mechanism, the number of binding sites (g), the dissociation binding constant (K d), the molar enthalpy of binding (ΔΗ) and other thermodynamic parameters can be obtained by the extended solvation theory.  相似文献   

4.
Isothermal titration calorimetry (ITC) and potentiometric titration (PT) methods were used to study the interactions of cobalt(II) and nickel(II) ions with buffer substances 2-(N-morpholino)ethanesulfonic acid (Mes), dimethylarsenic acid (Caco), and piperazine-N,N′-bis(2-ethanesulfonic acid) (Pipes). Based on the results of PT data, the stability constants were calculated for the metal–buffer complexes (T = 298.15 K, ionic strength I = 100 mM NaClO4). Furthermore, calorimetric measurements (ITC) were run in 100 mM Mes, Caco, and Pipes solutions with pH 6, at 298.15 K. The enthalpies (ΔH) of the metal–buffer complexation reactions were calculated indirectly by displacement titration using nitrilotriacetic acid (H3NTA) as a strong-binding, competitive ligand. Finally, to verify obtained results, the number of protons released by H3NTA due to complexation of the cobalt(II) and nickel(II) ions was determined from calorimetric data and compared with results of calculations.  相似文献   

5.
The results obtained in potentiometric titrations of copper(II), mercury(II) and iron(III) with standard EDTA solutions are presented. The titration of copper(II) at pH values in the range from 8.11 to 10.99 (ammonia buffer) and the titration of mercury(II) and iron(III) at pH values from 3.59 to 5.65 (acetate buffer) were performed. The titration end-point (TEP) was detected with an indicator electrode made from natural crystalline pyrite as an electrochemical sensor. The results obtained in potentiometric titration with the pyrite electrode were compared with those obtained using a platinum electrode (Fe3+), a Cu ion selective electrode (Cu2+) and a Hg electrode (Hg2+). Accurate and reproducible results with good agreement were obtained, but higher potential changes at the TEP were obtained using the pyrite electrode. In the course of the titration the potential was established within less than 1 min, whereas at the TEP it was within about 2–3 min. The potential changes at the TEP were in the range from 60 to 200 mV per 0.1 ml EDTA, according to the stability constant of the complex formed. The highest potential changes, ranging from 160 to 200 mV, were obtained in the titration of iron(III) at pH 3.59. Reverse titration was also performed and accurate and reproducible results were obtained. Moreover, titration of halogenide and thiocyanate with standard mercury(II) solutions, as well as cyanide with silver(I) solution, were performed and accurate and reproducible results were again obtained. Received: 20 February 1998 / Accepted: 19 November 1999  相似文献   

6.
Isothermal titration calorimetry (ITC) and batch calorimetry techniques have been used to evaluate the effect of added antioxidant (Quercetin, QN) on the binding between a polymer/surfactant complex, namely the sodium salt of polystyrene sulfonate (PSS) and typical anionic surfactant sodium dodecylsulfate (SDS). An indirect isotherm approximation method and the Satake–Yang model have been used to evaluate the binding parameter (Ku), adsorption cooperativity (u), and the Gibbs free energy of cooperative and non-cooperative binding (ΔG C and ΔG N) from the ITC data. The enthalpy of dissolution of QN into various PSS/water and PSS/SDS/water solutions has been evaluated from batch calorimetry to study the energetics of the polymer/surfactant binding in the presence of QN.  相似文献   

7.
The cyanide ion was studied as an effecter of Jack bean urease at 300 K in 30 mmol⋅L−1 Tris buffer, pH=7. The inhibition was investigated by isothermal titration calorimetry (ITC). The extended solvation model was used for CN+JBU interaction over the whole range of CN concentrations. The binding parameters recovered from the solvation model were attributed to the interaction with cyanide ion. It was found that cyanide ion acted as a noncooperative inhibitor of urease, and there is a set of 12 identical and independent binding sites for CN ions. The dissociation equilibrium constant is 749.99 μmol⋅L−1. The molar enthalpy of binding is ΔH=−13.60 kJ⋅mol−1.  相似文献   

8.
Isothermal titration calorimetry has been used to determine the stoichiometry, formation constants and thermodynamic parameters (ΔG o, ΔH, ΔS) for the formation of the citrate complexes with the Mn2+, Co2+, Ni2+ and Zn2+ ions. The measurements were run in Cacodylate, Pipes and Mes buffer solutions with a pH of 6, at 298.15 K. A constant ionic strength of 100 mM was maintained with NaClO4. The influence of a metal ion on its interaction energy with the citrate ions and the stability of the resulting complexes have been discussed.  相似文献   

9.
A copper(II) ion-selective-electrode potentiometric method was used to determine the first and second hydrolysis constants of Cu2+. Special techniques prevented copper(II) hydroxide precipitation, and copper(II) carbonate and cipper(II) organic complexation during the titration of the experimental solution over the pH range 6.8–8.4. The large change in the total copper concentration during the titration due to adsorption of copper onto the vessel walls was accounted for by measuring the total copper concentration at each pH by atomic absorption spectrophotometry. The two hydrolysis constants were determined at 25°C in 0.7 and 0.05m NaClO4 media. The measured stability constants are independent of the copper concentration and yield similar zero ionic strength values. Also, the stepwise equilibrium constants decrease as the ligand number increases.  相似文献   

10.
The interaction of a flavonoid molecule (puerarin) with bovine serum albumin (BSA) was characterized by isothermal titration calorimetry (ITC), optical spectroscopic technique, and molecular modeling method under physiological conditions. The binding parameters for the reaction were calculated according to ITC experiments at different temperatures. The thermodynamic parameters, negative enthalpy changes (ΔH), and positive entropy (ΔS) indicated that the binding processes were entropically driven. The alterations of protein secondary structure in the presence of puerarin in aqueous solution were estimated by the evidences from FT-IR and CD spectroscopy with reductions of α-helices. On the basis of fluorescence resonance energy transfer (FRET) between excited tryptophan in BSA and BSA bound puerarin, the critical transfer distance and mean distance between tryptophan in BSA and puerarin were estimated.  相似文献   

11.
This work contributed to the adsorption of radiocobalt on goethite as a function of contact time, pH, ionic strength and foreign ions in the absence and presence of fulvic acid (FA) under ambient conditions. The results indicated that adsorption of Co(II) was dependent on ionic strength and foreign ions at low pH values (pH < 7.8), and independent of ionic strength and foreign ions at high pH values (pH > 7.8). Outer-sphere surface complexation and/or ion exchange were the main mechanisms of Co(II) adsorption on goethite at low pH values, whereas inner-sphere surface complexation was the main adsorption mechanism at high pH values. The presence of FA enhanced Co(II) adsorption at low pH values, but reduced Co(II) adsorption at high pH values. The thermodynamic data (ΔH 0, ΔS 0, ΔG 0) were calculated from the temperature dependent adsorption isotherms, and the results suggested that adsorption process of Co(II) on goethite was spontaneous and endothermic. The results are crucial to understand the physicochemical behavior of Co(II) in the nature environment.  相似文献   

12.
In this study, the entrapment of benzophenone (BZ) into supramolecular nanoassemblies prepared by mixing two water-soluble associative polymers (i.e. polymerized β-CD (pβ–CD) and dextran grafted with lauryl-side chains (MD)) has been investigated by using isothermal titration microcalorimetry (ITC) and molecular modeling. ITC experiments have been performed at various temperatures (4 °C (277 K), 25 °C (298 K), and 37 °C (310 K)) to evaluate the interaction of BZ with pβ–CD in comparison with β-CD. The inclusion complexation for both β-CD/BZ and pβ–CD/BZ interactions was entropy-driven (|ΔH| < |TΔS|) when the temperature of the experiment was low (4 °C) and enthalpy-driven (|ΔH| > |TΔS|) with minor entropic contribution when the temperature was increased (25 and 37 °C). Using all the thermodynamic data obtained for β-CD/BZ and pβ–CD/BZ interactions when the temperature of the experiment was varied, the \Updelta H   =   f(T\Updelta S ) \Updelta H\; = \;f(T\Updelta S ) plot was perfectly linear, which reflected an enthalpy–entropy compensation process. Finally, the combination of ITC data with molecular modeling provided consistent information in regard to the location of MD side chains and BZ inside the cyclodextrin cavity, as well as concerning the stability of the nanoassemblies loaded with BZ.  相似文献   

13.
The main aim of this research is to study the complexation of molybdenum(VI) with methyliminodiacetic acid in NaClO4 aqueous solutions at pH = 6.00 and ionic strengths (0.1<I/mol⋅dm−3<1.0) at 25 °C by using potentiometric and UV spectrophotometric measurements in order to obtain thermodynamic stability constants at I=0 mol⋅dm−3. A comparison with previous literature data was made for the stability constants, though few data were available. The stability constants data have been analyzed and interpreted by using extended Debye-Hückel theory, specific ion interaction theory and parabolic model. Finally it might be concluded that parabolic model applies better for this complexation reaction.  相似文献   

14.
Stability constants of copper(II) mono- and bis-complexes with L-tyrosine were determined by the potentiometric titration method. Gibbs energies of the transfer (Δtr G 0) of a ligand and a complex ion from water into water-ethanol solvents were calculated. Stability of the complexes [CuHTyr]+ and [Cu(HTyr)2] increases as the ethanol concentration in solutions increases. Increasing stability of the complexes is promoted by weakening solvation of ligand donor groups entering into coordination.  相似文献   

15.
Herein, hydroxyapatite (HAP) was prepared by aqueous precipitation technique and was characterized by using FT-IR and XRD to determine its chemical functional groups and micro-structure. The removal of cobalt from aqueous solution to HAP was studied by batch technique as a function of various environmental parameters such as contact time, pH, ionic strength, foreign ions, fulvic acid (FA), and temperature under ambient conditions. The results indicated that the sorption of Co(II) on HAP was strongly dependent on pH and ionic strength. The presence of FA enhanced the sorption of Co(II) on HAP at low pH, whereas reduced Co(II) sorption on HAP at high pH. The Langmuir, Freundlich and D-R models were used to simulate the sorption isotherms at three different temperatures of 303.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature dependent sorption isotherms indicated that the sorption process of Co(II) on HAP was spontaneous and endothermic. The sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange at low pH, whereas inner-sphere surface complexation or surface precipitation was the main sorption mechanism at high pH values. The results suggest that the HAP is a suitable material in the preconcentration and solidification of Co(II) from large volumes of aqueous solutions.  相似文献   

16.
In this work, sorption of Ni(II) from aqueous solution to goethite as a function of various water quality parameters and temperature was investigated. The results indicated that the pseudo-second-order rate equation fitted the kinetic sorption well. The sorption of Ni(II) to goethite was strongly dependent on pH and ionic strength. A positive effect of HA/FA on Ni(II) sorption was found at pH < 8.0, whereas a negative effect was observed at pH > 8.0. The Langmuir, Freundlich, and D-R models were applied to simulate the sorption isotherms at three different temperatures of 293.15 K, 313.15 K and 333.15 K. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) were calculated from the temperature dependent sorption, and the results indicated that the sorption was endothermic and spontaneous. At low pH, the sorption of Ni(II) was dominated by outer-sphere surface complexation or ion exchange with Na+/H+ on goethite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH.  相似文献   

17.
Removal of Zn(II) from aqueous solution by natural halloysite nanotubes   总被引:1,自引:0,他引:1  
Clay minerals have been widely used in wastewater disposal due to their strong sorption and complexation ability towards various environmental pollutants. In this study, the removal of Zn(II) from aqueous solution by natural halloysite nanotubes (HNTs) was studied as a function of various solution chemistry conditions such as contact time, pH, ionic strength, coexisting electrolyte ions and temperature under ambient conditions. The results indicated that the removal of Zn(II) by HNTs was strongly dependent on pH and ionic strength. Langmuir and Freundlich models were used to simulate the sorption isotherms of Zn(II) at three different temperatures of 293, 313 and 333 K. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) calculated from the temperature dependent sorption isotherms indicated that the removal process of Zn(II) by HNTs was endothermic and spontaneous. At low pH, the removal of Zn(II) was dominated by outer-sphere surface complexation and/or cation exchange with Na+/H+ on HNT surfaces, whereas inner-sphere surface complexation was the main removal mechanism at high pH. From the experimental results, one can conclude that HNTs may have a good potentiality for the disposal of Zn(II)-bearing wastewaters.  相似文献   

18.
The interaction of celecoxib (Celox) with cyclodextrins (CDs) has been investigated by phase solubility techniques. In this study, the influences of CD type, pH, buffer type, buffer concentration and temperature on the tendency of Celox to form inclusion complexes with CDs were examined. The tendency of Celox to complex with CDs is in the order HP-β-CD > β-CD > γ-CD > α-CD, where the complex formation constants (K 11) were 1377, 693, 126 and 60 M−1, respectively. Also ionization of the slightly acidic Celox (pK a=9.7) was found to reduce its tendency to complex (i.e., The K 11 values of Celox/β-CD in 0.05 M phosphate buffer were 976 and 210 M−1 for neutral and ionized Celox, respectively). Increasing citrate and phosphate buffer concentration enhances the tendency of ionized Celox to complex with β-CD as a result of a corresponding decrease in the inherent solubility (S 0) of the Celox anion. On the other hand, these two buffers interact differently with neutral Celox and β-CD, where increasing phosphate buffer concentration at low pH enhances the complexation of neutral Celox by lowering S 0, while increasing citrate buffer concentration at low pH reduces complex formation as citrate buffer species, mainly citric acid, act as a solublizer and a competitor for Celox and β-CD. The contribution of Celox hydrophobicity for complex stability constitutes about 77% of the driving force for complex stability. The complex formation of neutral Celox with β-CD (ΔG 0=−28.6 kJ/mol) is driven by both enthalpy (ΔH 0=−21.7 kJ/mol) and entropy (ΔS 0=23.3 J/mol K) changes.  相似文献   

19.
A thermodynamic study of the interaction of bovine carbonic anhydrase II, CAII, with zinc ion was carried out by using isothermal titration calorimetry (ITC) at 300, 310 and 320 K in Tris buffer solutions at pH=7.5. The heats of Zn2++ CAII interaction are reported and analyzed in terms of the new solvation theory. It was indicated that there are three identical and non-cooperative sites on CAII for Zn2+. The binding of a zinc ion is exothermic with dissociation equilibrium constants of 78.32, 95.81 and 116.70 mmol⋅L−1 at 300, 310 and 320 K respectively.  相似文献   

20.
Carbonate hydroxylapatite (CHAP), prepared from eggshell waste, was used to remove 60Co(II) from aqueous solutions. The sorption of 60Co(II) on CHAP as a function of contact time, pH, ionic strength and foreign ions in the absence and presence of humic acid and fulvic acid under ambient conditions was studied. The sorption of 60Co(II) on CHAP was strongly dependent on pH and ionic strength. The thermodynamic parameters (ΔH 0, ΔS 0, ΔG 0) of 60Co(II) sorption on CHAP were calculated from the temperature-dependent sorption isotherms, and the results indicated that the sorption process of 60Co(II) on CHAP was endothermic and spontaneous. At low pH, the sorption of 60Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on CHAP surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. Experimental results also indicated that CHAP was a suitable low-cost adsorbent for pre-concentration and solidification of 60Co(II) from large volumes of aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号