首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using the method of phase modeling, the pH values of solutions corresponding to the uncharged surface of passive iron and ferric oxide γ-Fe2O3 (pH0) are compared. According to the theory of connected places, the charge of metal oxide surface is determined by the adsorption or desorption of hydrogen ions leading to a change in the potential drop at the oxide/solution interface. Preliminarily passivated iron electrode was washed with twice-distilled water and placed into 0.5 M NaNO3 solution with various pH values; the variation in the potential (ΔE) with time was studied. The pH0 value for passive electrode under the open-circuit conditions was determined by the dependence of ΔE on the pH value (pH0 6.2 ± 0.1). The pH0 value was close to that for γ-Fe2O3 (pH0 6.2), which was determined by the method of potentiometrical titration of oxide suspension in the nitrate solution. The introduction of surface-active ions Ba2+ and Cl? changes the charge of passive iron surface: Ba2+ ions increase the electrode potential, while Cl? ions decrease it. Comparing the pH0 values for passive electrode and metal oxides, one can identify the composition of passive electrode surface.  相似文献   

2.
The anodic stripping peak current of lead on the glassy carbon electrode surface was greatly increased in the presence of high concentration of copper ion. The effects of supporting electrolyte, concentration of Cu2+, accumulation potential and accumulation time were studied on the stripping peak current of Pb2+. As a result, a sensitive, simple and rapid electrochemical method was developed for the detection of lead. In 0.01 M HNO3 solution containing 800 g,g L?1 Cu2+, the stripping peak current of Pb2+ increases linearly with its concentration over the range from 2 to 100 μg L?1. The detection limit is 1 μg L?1 after 4-min accumulation at ?0.8 V. It was used to detect the concentration of lead in blood samples, and the results consisted with the values that obtained by atomic absorption spectrometry.  相似文献   

3.
In this paper, a novel current oscillatory phenomenon for Cu2+ at the water/1,2‐dichloroethane interface is reported with cyclic voltammetry and potential‐step chronoamperometry. The small irregular current spikes were only observed near the site of the oxidation peak of CuCl2? and were mainly related to the Cu2+concentration in the aqueous phase. Our experimental results demonstrated that the current oscillation is caused by specific adsorption of ion pairs at the W/DCE interface between Cu2+ in the aqueous phase and TPB? in the organic phase. Therefore, a specific adsorption of ion pair model has been formulated for the current oscillation at the liquid/liquid interface. The DFT calculation method was used to explain the mechanism of ion pair formation. The calculation results suggested that the TPB?Cu2+TPB? ion pair has the lowest‐energy state, thus providing qualitative support for the ion pair model. A probable mechanism for the observed current oscillation was also discussed in this paper. At the same time, a spectrophotometric experiment was performed to evidence a strong attractive interaction between Cu2+ and TPB?.  相似文献   

4.
The liquid membrane transport of Pb2+ cation using decyl-18-crown-6 as selective ion carrier was studied. The transport of lead ion across the liquid membrane in the presence of S2O 3 2? , P2O 7 4? , CN?, SCN?, and DDC? as stripping agents in the receiving phase shows that the nature and the concentration of the stripping agents affect on Pb2+ cation transport and the maximum transport occurs when the sodium thiosulfate (Na2S2O3) was used. The effects of various parameters influencing the transport efficiency such as the pH of the source and receiving phases, the concentration of picrate ion as counter ion in the source phase were also studied. Five replicated experiments show that a value 82.12 ± 2.09% of the initial concentration of the Pb2+ cation in the source phase is extracted into the receiving phase after 4 hours. Also the selectivity and efficiency of lead ion transport from the source phase containing equimolar mixtures of Na+, K+, Ca2+, Ni2+, Cu2+, Cd2+ and Ag+ metal cations were investigated.  相似文献   

5.
Sensitization of porous TiO2 film was achieved in water phase by monomeric as well as polymeric polypyridine Ru complexes, i.e., Ru(bpy)32+, polymer-pendant Ru(bpy)32+, dicarboxybipyridine Ru complex (Ru(dcbpy)34−), and bipyrimidine Ru complex, to generate photocurrent. It was found that the photocurrent induced by Ru(bpy)32+ is saturated with the increase of the complex concentration in water showing that adsorption of the complex onto the TiO2 is important for the sensitization. The water insoluble poly-Ru(bpy)32+ could be used as a film on the TiO2 although the efficiency was not very good under the conditions employed. The anionic Ru(dcbpy)34− gave the best results probably because of its electrostatic adsorption onto the positively charged TiO2.  相似文献   

6.
New biligand complexes of iron(III) are synthesized based on 3,4,5-tri(tetradecyloxy)benzoyloxy-4-salicylidene-N′-ethyl-N-ethylenediamine azomethine with the outer sphere NO3?, PF6?, Cl?, BF4?, ClO4?, and CNS anions. All the target compounds are characterized by gel exclusion chromatography, elemental analysis, and electron, IR, and NMR spectroscopy. The presence of complex-forming ions is confirmed by FT-IR spectra in the far region. The formation of biligand polychelate complexes with an octahedral packing of the iron ion is observed. Phase transitions in the resulting coordination compounds are studied by differential scanning calorimetry and optical polarizing thermomicroscopy. The presence of several polymorphic crystalline modifications, as well as mesophases, is established. Mesomorphic properties are found for complexes with chloride and tetrafluoroborate anions.  相似文献   

7.
A procedure for treatment of simulated wastewater solutions to remove Cu2+, Ni2+, and SCN? ions using various combinations of aluminum and iron electrodes in the electro- and peroxyelectrocoagulation processes was studied. The influence exerted by the current density, pH of solution, and concentrations of impurities and hydrogen peroxide on the efficiency of removal of these ions was analyzed. Electrocoagulation using aluminum anode does not lead to a significant decrease in the thiocyanate concentration. In the peroxyelectrocoagulation process, the efficiency of removal of SCN? ions increases with an increase in the [H2O2]: [SCN?] ratio. The electrocoagulation efficiency with the Fe/Fe electrode pair reaches 87% for SCN? and 99.5% for Cu2+ and Ni2+ at a current density of 20 mA cm–2 and electrolysis time of 20 min.  相似文献   

8.
The inhibition effect of 1-methyl pyrazole (MPA) on the acidic corrosion of iron in 1.0 M HCl was studied at different concentrations (10?3–10?2 M) by potentiodynamic polarization and electrochemical impedance spectroscopy, and EIS measurements. It is found from the polarization studies that methyl pyrazole (MPA) behaves mainly as anodic inhibitor in HCl. Values of polarization resistance (Rp) and double layer capacitance (Cdl) in the absence and presence of MPA in 1.0 M HCl are determined. The adsorption of MPA on iron surface from HCl is found to obey Temkin adsorption isotherm.  相似文献   

9.
The redox reaction between tris(1,10-phenanthroline)iron(II), [Fe(phen)3]2+, and azido-pentacyanocobaltate(III), [Co(CN)5N3]3? was investigated in three cationic surfactants: dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB) in the presence of 0.1?M NaCl at 35°C. Second-order rate constant in the absence and presence of surfactant, kw and kψ, respectively, were obtained in the concentration ranges DTAB?=?0???4.667?×?10?4?mol?dm?3, TTAB?=?0–9.364?×?10?5?mol?dm?3, CTAB?=?0???6.220?×?10?5?mol?dm?3. Electron transfer rate was inhibited by the surfactants with premicelllar activity. Inhibition factors, kw/kψ followed the trend CTAB?>?TTAB?>?DTAB with respect to the surfactant concentrations used. The magnitudes of the binding constants obtained suggest significant electrostatic and hydrophobic interactions. Activation parameters ΔH, ΔS, and Ea have larger positive values in the presence of surfactants than in surfactant-free medium. The electron transfer is proposed to proceed via outer-sphere mechanism in the presence of the surfactants.  相似文献   

10.
In this study, optimum conditions for adsorption of heavy metals such as Cu2+, Cd2+ and Pb2+ onto a low-cost, magnetically modified-alkali conditioned anaerobically digested sludge (MADS) adsorbent were obtained. Response Surface Methodology (RSM) incorporating Central Composite Design (CCD) of experiments was applied to optimize four independent process variables. Statistical analysis was executed by ANOVA and the quadratic model developed had regression coefficients of 0.959, 0.957 and 0.95 for Cu2+, Cd2+ and Pb2+, respectively. The independent variables such as pH, time and initial concentration positively influenced adsorption capacity, qe, whereas the value of qe decreased with an increase in MADS dosage. Model validation experiments for optimization of adsorption process showed comparable results with predicted values. The adsorption capacity of MADS adsorbent at optimum conditions found through RSM analysis was 29.721 mg L?1, 28.551 mg L?1 and 28.601 mg L?1 for Cu2+, Cd2+ and Pb2+ respectively.  相似文献   

11.
The passive ranges of carbon steel rebar and 3Cr steel rebar in saturated Ca(OH)2‐simulated concrete pore solution with pH 12.6 were determined by means of cyclic voltammetry and potentiodynamic polarization curves. Chronopotentiometry was used to obtain steady‐state conditions for the formation of passive films on rebar samples at different anodic potentials. Electrochemical impedance spectroscopy, Mott–Schottky and X‐ray photoelectron spectrometer curves were employed to compare the formed passive films at different potentials. Additionally, cyclic polarization curves were used to compare the corrosion resistances of formed passive films on the two rebars in saturated Ca(OH)2‐simulated concrete pore solution with different concentration of Cl?. The results show that the passive ranges of the two rebars are all between ?0.15 and +0.6 V, and more stable passive films can be formed on both rebars at the anodic potential of +0.3 V. In the absence of Cl?, the stability and corrosion resistance of the passive film formed on the 3Cr rebar are better than those of CS rebar. The passive film of 3Cr steel has the relatively better pitting corrosion resistance than carbon steel in saturated Ca(OH)2‐simulated concrete pore solution that contains different concentration of Cl?. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Radiotracer study of the adsorption of phosphoric acid on platinized platinum electrodes was carried out under different experimental conditions. The potential and concentration dependence of the adsorption was studied at low concentrations (5×10?6–6×10?3 mol dm?3) in the presence of 1 M HClO4 supporting electrolyte. A Freundlich type isotherm was found. The effect of different additives was studied. In the presence of Cl? and HSO4? ions and oxalic acid the decrease of the adsorption of H3PO4 may be observed. On the other hand Cd2+ and Cu2+ ions induce the increase of the adsorption of H3PO4 in the potential range where their electrosorption takes place.  相似文献   

14.
Differential capacitance curves in the (In-Ga)/[N-methylformamide + mc KCl + (1 ? m)c KClO4] and (In-Ga)/[N-methylformamide + mc KBr + (1 ? m)c KClO4] systems are measured using an ac bridge for the following molar portions m of the surface-active anion: 0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1. The Cl? and Br? anions specific adsorption in the systems can be described quantitatively by the Frumkin isotherm. The principal parameters of Cl? and Br? anions adsorption at the (In-Ga)/N-methylformamide interface are determined by different methods. Unlike Ga/N-methylformamide interface, where the adsorption energy increased in the sequence I? ≈ Br? < Cl?, at the (In-Ga)/N-methylformamide interface it increased in the reverse sequence: Cl? < Br? < I?. The adsorption parameters at the charge density q = 0, obtained by three different methods, are close to each other. However, the parameters α1 and α2, which characterize the charge effect on the adsorption energy, when determined by the analyzing of dependences of adsorption potential drop E ads on ln(mc), differ from those determined by two other methods. The error may be caused by the assuming that the adsorption potential drop is proportional to the coverage of dense layer with the specifically adsorbed ions.  相似文献   

15.
A novel macroporous silica-based hexagonal tungsten oxide (h-WO3/SiO2) with exchangeable sodium cations located in hexagonal tunnel structure was synthesized by a facile hydrothermal treatment of sodium tungstate dihydrate with 1 mol/L HCl solution. Utilization of the h-WO3/SiO2 adsorbent to remove aqueous strontium was investigated under the condition of various pH values, contact time, the initial concentration of metal ions, salt ion concentration, and coexisting ions. According to the experimental data, Sr2+ adsorption equilibrium was achieved within 15 min in acidic solution, and the maximum removal capacity of Sr2+ occurred at pH 4. The kinetic adsorption of Sr2+ on h-WO3/SiO2 was controlled by pseudo second-order model, and the saturated adsorption of Sr2+ on h-WO3/SiO2 was better described by Langmuir and Redlich-Peterson isotherm models compared with the Freundlich isotherm model. The distribution coefficient of Sr2+ was more than 2000 cm3/g in the presence of Ca2+, Mg2+, La3+, and Eu3+, indicating that the h-WO3/SiO2 showed excellent selectivity towards Sr2+ in pH 4.  相似文献   

16.
Changes in the adsorption profiles of 1,4-naphthohydroquinone (NHQ) on smooth polycrystalline platinum electrodes in aqueous 1 M HClO4 brought about by varying levels of surface-active organic impurities [typified by hydroquinone (HQ) and benzene] have been studied by thin-layer electrochemical techniques, 10?5M HQ is sufficient to alter the adsorption profile of NHQ; above 10?4M HQ, the packing density transitions prominent from pure NHQ solutions were completely suppressed. Similar results were obtained when benzene was used as the contaminant. Packing density measurements indicated that the subject surface-active impurities inhibited formation of flat-, but not edge-, adsorbed NHQ; this is in agreement with data from a previous study [M.P. Soriaga, J.H. White, D. Song and A.T. Hubbard, J. Electroanal. Chem., 171 (1984) 359] which showed that low-levels of iodide, a surface-active anion, enforced formation of edge-adsorbed NHQ even at (low) concentrations where flat-adsrobed species would have formed from pure NHQ solutions. The presence of surface-active impurities may help account for the profound differences in adsorption measurements reported in the literature for various aromatic compounds.  相似文献   

17.
In this study, the photocatalytic activity of graphitic carbon nitride (g‐C3N4) synthesized via different precursors (urea, thiourea, and dicyandiamide) is investigated in the degradation process of tetracycline. Owing to the efficient charge separation and transfer, prolonged radiative lifetime of charge, large surface area, and nanosheet morphology, the urea‐derived g‐C3N4 exhibits superior photocatalytic activity for tetracycline degradation under visible‐light irradiation. This performance can compare with that of most reported g‐C3N4‐based composite photocatalysts. Through the time‐circle degradation experiment, the urea‐derived g‐C3N4 is found to have an excellent photocatalytic stability. The presence of NO3?, CH3COO?, Cl? and SO42? ions with the concentration of 10 mm inhibits the photocatalytic activity of urea‐derived g‐C3N4, where this inhibitory effect is more obvious for Cl? and SO42? ions. For the coexisting Cu2+, Ca2+, and Zn2+ ions, the Cu2+ ion exhibits a significantly higher inhibitory effect than Ca2+ and Zn2+ ions for tetracycline degradation. However, both the inhibitory and facilitating effects are observed in the presence of Fe3+ ion with different concentration. The h+, .OH and .O2? radicals are confirmed as major oxidation species and a possible photocatalytic mechanism is proposed in a urea‐derived g‐C3N4 reaction system. This study is of important significance to promote the large‐scale application of g‐C3N4 photocatalysts in antibiotic wastewater purification.  相似文献   

18.
Recently reported ionophore‐based ion‐selective nanospheres contained pH‐independent and positively charged solvatochromic dyes. Here, we evaluate systematically the effect of anions to the fluorescence response of the nanospheres. The anion interference was found significant for anion concentrations above 10 mM. The sensor responses in the presence of various anion background was studied. While target ion (K+) causes the fluorescence of the nanospheres to decrease, increasing anion background also leads to lower fluorescence intensity. Lipophilic anions such as ClO4?, SCN?, and I? exhibited much more interference than hydrophilic anions (e. g., NO3?, Cl?, F?, SO42?). The trend of the anion interference followed the Hofmeister series. A theoretical model was also demonstrated based on anion adsorption on the surface of the nanospheres.  相似文献   

19.
IntactPhormidium sp. cells, immobilized on a SnO2 semiconductor electrode, are capable of transferring electrons to SnO2 in a light-dependent reaction. Drying a “wet” algal electrode at 50°C for 60 min increases photocurrent output capacity by 100-fold. We have studied the effect of various parameters on photocurrent generation. The magnitude of the photocurrent increased with increasing light intensity and depended on the nature of the electrolyte solution. The output, about 8 μA 10 μg Chl?1 cm+2, was obtained using 50 mM H3BO3?Na2CO3?KCl buffer as an electrolyte, an irradiance (>460 nm) of 250 J/m2, and potentiostatic conditions (the algal working electrode was poised at +0.6 V vs a saturated calomel electrode). The yield was more than doubled upon addition of an electron carrier, such as methyl viologen, benzyl viologen, or Vitamin K3, to the electrolyte solution. Maximum photocurrent was obtained at around pH 8 and 45°C, which are optimal conditions for growth of the cyanobacterium. Furthermore, DCMU, an inhibitor of photosynthetic electron flow, drastically decreased the yield, as did heat treatment of the electrode at 110°C for 15 min. The photocurrent action spectrum peak coincided well with the absorption peak of the light-harvesting pigment, phycocyanin. These results support the idea that electron transfer can occur across algal cell walls from the source of the light-induced reactions located within the lamellar membranes to the semiconductor electrode.  相似文献   

20.
In this study, a new Cr(III)-imprinted polymer (Cr(III)-IIP) is prepared from CrCl3·6H2O, methacrylic acid functional monomer, ethyleneglycoldimethacrylate cross-linking agent, 2,2?-azobisisobutyronitrile radical initiator and 2,2-(azanediylbis (ethane-2,1-diyl))bis(isoindoline-1,3-dione) ligand. To obtain the maximum adsorption capacity, the optimum condition was studied through pH, type and concentration of eluent, IIP weight, sample volume as well as the adsorption and desorption times. The Cr(III) ion content was determined via flame atomic absorption spectrometer. In optimum conditions, the adsorption capacity of the IIP for Cr(III) was obtained to be 74.65 mg g?1, using 50 mg of IIP and the initial pH solution of 3.0. Both the adsorption and desorption times for quantitative analyses of Cr(III) ions were 15 and 5 min; respectively. After elution of the adsorbed ions by 3 mL of 4 mol L?1 HNO3 aqueous solution, the established IIP-based SPE procedure provides a reasonable pre-concentration factor of 100. The IIP-based pre-concentration method provides a low detection limit of 1.7 µg L?1 with good repeatability (RSD?=?3.22%). Reusability studies confirmed that synthesis IIP is reusable and recoverable up to six cycles. According to the selectivity experiments, it was concluded that the prepared sorbent possesses more affinity toward Cr(III) ions than other ions such as Al3+, Pb2+, Cu2+, Mn2+, Fe2+, Zn2+, and Ni2+ ions. To evaluate the potential applicability of the proposed separation method, the pre-concentration and determination of trace amounts of Cr(III) were performed successfully in food samples with complex matrices, a bestial sample (i.e. cow liver) and an herbal product (i.e., broccoli) as real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号