首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self‐healing hydrogels as wound dressings still face challenges in infection prevention, especially in the dressing of mass wounds, due to their inflexibility and the slow formation of the protective film on the wound. Therefore, designing a spray‐filming (rapid‐forming) hydrogel that can serve as a bacterial barrier is of particular significance in the development of wound dressings. Here, a self‐healing hydrogel based on adipic acid dihydrazide‐modified gelatin (Gel‐ADH) and monoaldehyde‐modified sodium alginate(SA‐mCHO) is prepared. Using dynamic, Schiff base bonds, the hydrogels exhibit excellent self‐healing properties. Moreover, the gelation time of SA‐mCHO/Gel‐ADH (SG) hydrogels is shortened to 2–21 s, resulting in rapid filming by spraying the two precursor solutions. In addition, the rapid spray‐filming ability might offer sufficient flexibility and rapidity for dealing with mass and irregular wounds. Notably, the bacterial barrier experiments show that the SG hydrogel films could form an effective barrier to Staphylococcus aureus and Candida albicans for 12 h. Therefore, SG hydrogels could be used in wound dressings and they show great promise in applications associated with mass and irregular traumas.  相似文献   

2.
Development of self‐healing hydrogels with thermoresponse is very important for artificial smart materials. In this article, the self‐healing hydrogels with reversible thermoresponses were designed through across‐linking‐induced thermoresponse (CIT) mechanism. The hydrogels were prepared from ketone group containing copolymer bearing tetraphenyl ethylene (TPE) and cross‐linked by naphthalene containing acylhydrazide cross‐linker. The mechanical property, light emission, self‐healing, and thermo‐response of the hydrogels were investigated intensively. With regulation of the copolymer composition, the hydrogels showed thermoresponse with the LCST varied from above to below body temperature. At the same time, the hydrogels showed self‐healing property based on the reversible characteristic of the acylhydrazone bond. The hydrogel also showed temperature‐regulated light emission behavior based on AIE property of the TPE unit. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 869–877  相似文献   

3.
N‐[(Uracil‐5‐yl)methyl]urea is reported as a minimalistic low‐molecular‐weight hydrogelator (LMWHG). The unusual phosphate‐induced assembly of this compound has been thoroughly investigated by IR, UV/Vis, and NMR spectroscopy, electron microscopy, and rheological experiments. This rare example of an anion‐triggered urea‐based LMWHG is the first example of a pyrimidine‐ and urea‐containing molecule that can be forced into self‐assembly in aqueous solution without additional aromatic or lipophilic groups. The gelator/phosphate ratio within the hydrogel was successfully determined by 31P MAS NMR spectroscopy. The hydrogel exhibits a very fast and repeatable self‐healing property, and remarkable G′ values. The viscoelastic properties of the hydrogel can easily be tuned by variation of the phosphate ratio.  相似文献   

4.
Alginate and chitosan are among the most common biopolyelectrolytes. Surfactants can be included in alginate and chitosan formulations in order to improve their physical and functional properties. In the present study, the effect of the anionic surfactant sodium dodecyl sulfate (SDS) on alginate‐chitosan polyelectrolyte multilayer (PEM) films is reported for the first time. Layer‐by‐layer deposition technique was employed to prepare the PEM samples and the samples were characterized by ellipsometry, X‐ray reflectivity, atomic force microscopy, and quartz crystal microbalance with dissipation. Incorporation of SDS into PEM formulations increased the film thickness and an increased adsorption behavior between alginate and chitosan layers are observed. Since the concentration of SDS was below its critical micelle concentration, no micelle formation was expected and hydrophobic‐hydrophobic interaction between alginate and SDS might be the main reason. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1798–1803  相似文献   

5.
To provide sodium alginate (SA) with an antimicrobial property, we introduced chito-oligosaccharide (COS) via chemical bonding in a two-step procedure. We reacted COS with N-methylol acrylamide (NMA) with N-methylol groups to prepare acrylamidomethyl chito-oligosaccharide (COS–NMA). SA with COS side chains (SA–COS) was produced through a subsequent reaction of SA with COS–NMA. The chemical structure of SA–COS was confirmed by IR spectroscopy and 1H NMR spectroscopy. With a two-step method, we successfully prevented insoluble-complex formation due to electrostatic attraction between chitosan and alginate. SA–COS showed excellent antimicrobial activity, with the growth of microorganisms completely suppressed by a small amount of COS (1.8 wt %). © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1810–1816, 2001  相似文献   

6.
Frontal polymerization (FP) is applied for the synthesis of β‐cyclodextrin/poly(vinylimidazole‐co‐N‐vinylcaprolactam‐co‐acrylic acid) (β‐CD/P(VI‐co‐NVCL‐co‐AA)) copolymers. The dependence of frontal velocity and temperature on the initiator and cross‐linker are discussed. The synthesized copolymers have been characterized by Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The thermo‐pH dual‐stimuli responsive behavior of the hydrogel is determined by swelling measurement at different temperatures and pH values. Besides, the hydrogels show intrinsic self‐healing behavior and their healing efficiency is determined by the mechanical tests. Interestingly, we integrate FP with microfluidic technology, which may realize the execution of FP under continuous condition. Such simple microfluidics‐FP integrated approach has both methodological and practical value for the synthesis of functional materials. This paper mainly presents the synthesis and characterization of β‐cyclodextrin/poly(vinylimidazole‐co‐N‐vinylcaprolactam‐co‐acrylic acid) (β‐CD/P(VI‐co‐NVCL‐co‐AA)) copolymers by using thermal frontal polymerization (TFP). Hydrogels were found to be self‐healing with good mechanical performance and show dual thermo‐pH responsive behavior. Low‐cost, energy‐saving and efficient method of thermal frontal polymerization process was integrated with microfluidics technology to prepare supraball hydrogel. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1412–1423  相似文献   

7.
Dual‐crosslinked supramolecular elastomers with the hybrid network consisting of hydrogen bonds and covalent bonds combine the reversibility of hydrogen bond and mechanical properties of covalent crosslinking network. In this article, isocyanate mixture is used as curing agent to prepare dual‐crosslinked elastomer based on bifunctional polydimethylsiloxane under mild condition. This method can effectively build up a hybrid network with the designed structure. A series of elastomers with same hydrogen bond density and variable covalent crosslinking degree are obtained. Swelling measurements and 1H‐NMR spectra confirm the feasibility and controllability of curing method, the increasing of bifunctional isocyanate give rise to higher covalent crosslinking degree, improving the solvent resistance. The studies on viscoelastic property show that the introduction of an irreversible covalent crosslinking network stabilize the hybrid network, restrain the chain movement. The mechanical and self‐healing property studies reveal that the covalent crosslink significantly reinforce the whole network, while the reparable strength seems to mainly depend on the hydrogen bond density. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3760–3768  相似文献   

8.
An amino‐acid‐based (11‐(4‐(pyrene‐1‐yl)butanamido)undecanoic acid) self‐repairing hydrogel is reported. The native hydrogel, as well as hybrid hydrogels, have been thoroughly characterized by using various microscopic techniques, including transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy, fluorescence spectroscopy, FTIR spectroscopy, X‐ray diffraction, and by using rheological experiments. The native hydrogel exhibited interesting fluorescence properties, as well as a self‐healing property. Interestingly, the self‐healing, thixotropy, and stiffness of the native hydrogel can be successfully modulated by incorporating carbon‐based nanomaterials, including graphene, pristine single‐walled carbon nanotubes (Pr‐SWCNTs), and both graphene and Pr‐SWCNTs, within the native gel system. The self‐recovery time of the gel was shortened by the inclusion of reduced graphene oxide (RGO), Pr‐SWCNTs, or both RGO and Pr‐SWCNTs. Moreover, hybrid gels that contained RGO and/or Pr‐SWCNTs exhibited interesting semiconducting behavior.  相似文献   

9.
A series of the self‐healing gels facilely fabricated by VI (N‐vinyl imidazole) and MAH‐β‐CD (β‐cyclodextrin grafted vinyl carboxylic acid groups) via bottom‐ignited frontal polymerization (BIFP) initiated by magnetocaloric effect. Once ignited the bottom phase, the heat upward propagates to generate the “front” in the upper phase. Then, no further energy is added to maintain the reaction and the whole polymerization process experiences within minutes. In this system, the dependence of frontal velocity and temperature, along with morphology, swelling capacity, mechanical property, and self‐healing efficiency, on the preparation parameters is investigated. Interestingly, the gels show good swelling capacity in the organic solvent, comparatively almost no absorption in water. Moreover, the as‐prepared gels exhibit excellent auto‐healing properties without any external stimuli at ambient temperature. The healed sample possesses 97% recovery of its tensile strength after 8 h healing time, which relies largely on the host–guest interaction between VI and MAH‐β‐CD. The results demonstrate that FP can be utilized as an efficient and energy‐saving method to synthesize self‐healing supramolecular gels. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2585–2593  相似文献   

10.
A composite hydrogel based on, by introducing, polyvinyl alcohol, sodium alginate, and hyaluronic acid was fabricated using CaCl2 as a cross-linker. The physical properties including morphology, water vapor transmission rate, and hydrophilicity were investigated. All PVA/SA/HA composite hydrogels with different compositions had highly homogeneous and interconnected pores, and the morphologies of the PVA/SA/HA hydrogels ranged from fibrous structure to irregular structure with increasing content of SA. The introduction of sodium alginate enhanced the hydrophilicity and water vapor transmission capacity of the hydrogel; however, the hydrophilicity of the composite hydrogels decreased with the increasing cross-linker content.  相似文献   

11.
Functional materials having the ability to self‐heal cracks or scratches after damage are of great interest for a huge scope of applications. Herein, we report a self‐healing polyurethane urea‐based material with implemented 1‐(2‐aminoethyl) imidazolidone (UDETA) as a chain terminating molecule and for hydrogen bond network formation. Both, UDETA content and moisture affected the self‐healing process. The reversible change in the materials properties was proven by detailed analyses of hardness and thermomechanical behavior in dependence of the water uptake of the samples. FT‐IR analysis revealed that water is able to act as a plasticizer interrupting hydrogen bonding interactions within the polymer network and thus, influencing glass transition temperature and hardness of the samples. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 537–548.  相似文献   

12.
Supramolecular polyurethane ureas are expected to have superior mechanical properties primarily due to the reversible, noncovalent interactions such as hydrogen bonding interactions. We synthesized polyurethane prepolymers from small molecular weight of poly(tetramethylene ether)glycol and isophorone diisocyanates, which were end capped with propylamine to synthesize polyurethane ureas with high contents of urea and urethane groups for hydrogen‐bonding formations to facilitate self‐healing. The effects of polyurethane urea molecular weight (3000 ≤ Mn ≤ 9000), crosslinking, and cutting direction were studied in terms of thermal, mechanical, and morphological properties with an emphasis on the self‐healing efficiency. It was found that the thermal self‐healability was more pronounced as the molecular weight of polyurethane urea decreased, showing a maximum of more than 96% with 3000 Mn when the sample was cut along the stretch direction. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 468–474  相似文献   

13.
In this article, a fast and high efficient healing hydroxypropyl guar gum (HPG)/poly(N,N‐dimethyl acrylamide) (PDMA) hydrogel is prepared by a facile synthesis method. HPG networks are formed through hydrogen‐bond interaction between the hydroxyl groups in the HPG chains, and PDMA networks are self‐crosslinked without any chemical crosslinker. The cut hydrogel could heal when nanosilica solution is chosen as the connector that is related to the adsorption of polymer to the surface of nanosilica. The fracture stress of the HPG/PDMA gels presents a fast and almost full recovery within a short time (1 min), while the recovery of fracture strain and elastic modulus is related to time in 2 h. The healing efficiency of HPG/PDMA gel is investigated as a function of healing time, HPG content, and N,N‐dimethyl acrylamide content. The microscopic healing process and healing mechanism are also discussed. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 239–247  相似文献   

14.
The nanostructure of the fibrillar supramolecular aggregates generated in decane solutions of homoditopic heterocomplementary monomers forming sextuple hydrogen‐bond‐mediated self‐assemblies was investigated by small‐angle neutron scattering and cryogenic‐temperature transmission electron microscopy. The persistence length (Lp) of the fibrillar aggregates was found to be ~18 nm, as inferred from combined measurements of the radius of gyration and of the contour length. The values of both the weight‐average molecular weight and the mass per unit length of the fibers suggest that the latter consist of few aggregated monomolecular wires. At T = 25 °C, the formation of branched aggregates occurs around the crossover concentration, C*, between the dilute and semidilute regimes, whereas the classical behavior of equilibrium polymers is observed at T = 65 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 103–115, 2007  相似文献   

15.
A self‐healing hydrogel is prepared by crosslinking acrylamide with a host–guest macro‐crosslinker assembled from poly(β‐cyclodextrin) nanogel and azobenzeneacrylamide. The photoisomerizable azobenzene moiety can change its binding affinity with β‐cyclodextrin, therefore the crosslinking density and rheology property of the hydrogel can be tuned with light stimulus. The hydrogel can repair its wound autonomously through the dynamic host–guest interaction. In addition, the wounded hydrogel will lose its ability of self‐healing when exposed to ultraviolet light, and the self‐healing behavior can be recovered upon the irradiation of visible light. The utilizing of host–guest macro‐crosslinking approach manifests the as‐prepared hydrogel reversible and light‐switchable self‐healing property, which would broaden the potential applications of self‐healing polymers.

  相似文献   


16.
The synthesis and thermomechanical properties of a novel class of self‐healing perfluoropolyethers (PFPEs) is reported. By decoration of 2‐ureido‐4[1H]‐pyrimidone end groups on the termini of low molar mass PFPE, the formation of supramolecular polymers and networks held together via hydrogen bonding associations was achieved. These novel supramolecular polymer materials exhibit a combination of enhanced modulus and elasticity, along with self‐healing properties, where rapid self‐healing time was demonstrated using dynamic rheological measurements. These types of supramolecular PFPEs are anticipated to be useful for a number of emerging areas in lubrication. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3598–3606  相似文献   

17.
Multivalent carbohydrate–lectin interactions play a crucial role in bacterial infection. Biomimicry of multivalent glycosystems represents a major strategy in the repression of bacterial growth. In this study, a new kind of glycopeptide (Naphthyl‐Phe‐Phe‐Ser‐Tyr, NMY) scaffold with mannose modification is designed and synthesized, which is able to perform supramolecular self‐assembly with the assistance of catalytic enzyme, and present multiple mannose ligands on its self‐assembled structure to target mannose‐binding proteins. Relying on multivalent carbohydrate–lectin interactions, the glycopeptide hydrogel is able to bind Escherichia coli (E. coli) in high specificity, and result in bacterial adhesion, membrane disruption and subsequent cell death. In vivo wound healing assays reveal that this glycopeptide hydrogel exhibits considerable potentials for promoting wound healing and preventing E. coli infection in a full‐thickness skin defect mouse model. Therefore, through a specific mannose–lectin interaction, a biocompatible hydrogel with inherent antibacterial activity against E. coli is achieved without the need to resort to antibiotic or antimicrobial agent treatment, highlighting the potential role of sugar‐coated nanomaterials in wound healing and control of bacterial pathogenesis.  相似文献   

18.
Composite ionic‐covalent entanglement (ICE) hydrogel networks were prepared from poly(N‐isopropylacrylamide), alginate, and carbon nanofibres. An optimised triple network hydrogel with 86% water content exhibited a compressive strength of 3.0 ± 0.1 MPa and 66 ± 13 mS/cm electrical conductivity. Thermal actuation was shown to have a shorter response time for gels containing nanofibres, compared to those which did not and hydrogel samples more than halved in volume within 1 minute when placed in a 60 °C water bath. Controlled dye release was demonstrated as a potential application and used to further quantify thermal actuation over short times. Joule heating techniques were used to electronically actuate the hydrogel samples, removing the traditional requirements for immersion in a temperature controlled liquid. It is expected that devices based on these materials will find potential applications in soft robotics and micro fluidics. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 46–52  相似文献   

19.
To study light‐triggered self‐healing in supramolecular materials, we synthesized supramolecular thermoplastic elastomers with mechanical properties that were reversibly modulated with temperature. By changing the supramolecular architecture, we created polymers with different temperature responses. Detailed characterization of the hydrogen‐bonding material revealed dramatically different temperature and mechanical stress response due to two different stable states with changes in the hydrogen bonding interactions. A semi‐crystalline state showed no response to oscillatory shear deformations while the melt state behaved as a typical energy dissipative material with a clear crossover between storage and loss moduli. Comparison studies on heat generation after light excitation revealed no differences in photo‐thermal conversion when an Fe(II)‐phenanthroline chromophore was either physically blended into the H‐bonding polymer or covalently attached to the supramolecular network. These materials showed healing of scratches with light‐irradiation, as long as the overlap of material absorbance and laser excitation was sufficient. Differences in the efficiency and rate of photohealing were observed, depending on the type of supramolecular interaction, and these were attributed to the differences in the thermal response of the materials' moduli. Such results provide insight into how materials can be designed with chromophores and supramolecular bonding interactions to tune the light‐healing efficiency of the materials. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1003–1011  相似文献   

20.
Novel magnetic‐targeted pH‐responsive drug delivery system have been designed by the layer‐by‐layer self‐ assembly of the polyelectrolytes (oligochitosan as the polycation and sodium alginate as the polyanion) via the electrostatic interaction with the oil‐in‐water type hybrid emulsion droplets containing the superparamagnetic ferroferric oxide nanoparticles and drug molecules [dipyridamole (DIP)] as cores. Here the drug molecules were directly encapsulated into the interior of droplets without etching the templates and refilling with the desired guest molecules. The drug‐delivery system showed high encapsulation efficiency of drugs and drug‐loading capacity. The cumulative release ratio of dipyridamole from the oligochitosan/sodium alginate multilayer‐encapsulated magnetic hybrid emulsion droplets (DIP/Fe3O4‐OA/OA)@(OCS/SAL)4 was up to almost 100% after 31 h at pH 1.8. However, the cumulative release ratio was only 3.3% at pH 7.4 even after 48 h. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号