首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This Note presents an approximation method for convex yield surfaces in the framework of yield design theory. The proposed algorithm constructs an approximation using a convex hull of ellipsoids such that the approximate criterion can be formulated in terms of second-order conic constraints. The algorithm can treat bounded as well as unbounded yield surfaces. Its efficiency is illustrated on two yield surfaces obtained using up-scaling procedures.  相似文献   

2.
Itisinrecentyearsthatthedamagemechanicsissuccessfulinstudyingthefatigueproblems.Thekeytothismethodistodefineanappropriatedamagevariablewhichhasaclearphysicalmeaningandshouldbemeasuredbyasimpleexperimentalprocedure,andthevariablecanbeusedtoestablished…  相似文献   

3.
The aim of this work is to construct yield surfaces to describe initial yielding and characterize hardening behavior of a highly anisotropic material. A methodology for constructing yield surfaces for isotropic materials using axial–torsion loading is extended to highly anisotropic materials. The technique uses a sensitive definition of yielding based on permanent strain rather than offset strain, and enables multiple yield points and multiple yield surfaces to be conducted on a single specimen. A target value of 20 × 10−6 is used for Al2O3 fiber reinforced aluminum laminates having a fiber volume fraction of 0.55. Sixteen radial probes are used to define the yield locus in the axial–shear stress plane. Initial yield surfaces for [04], [904], and [0/90]2 fibrous aluminum laminates are well described by ellipses in the axial–shear stress plane having aspect ratios of 10, 2.5, and 3.3, respectively. For reference, the aspect ratio of the Mises ellipse for an isotropic material is 1.73. Initial yield surfaces do not have a tension–compression asymmetry. Four overload profiles (plus, ex, hourglass, and zee) are applied to characterize hardening of a [0/90]2 laminate by constructing 30 subsequent yield surfaces. Parameters to describe the center and axes of an ellipse are regressed to the yield points. The results clearly indicate that kinematic hardening dominates so that material state evolution can be described by tracking the center of the yield locus. For a nonproportional overload of (στ) = (500, 70) MPa, the center of the yield locus translated to (στ) = (430, 37) MPa and the ellipse major axis was only 110 MPa.  相似文献   

4.
袁康博  姚小虎  王瑞丰  莫泳晖 《爆炸与冲击》2022,42(9):091401-1-091401-34

金属材料在冲击、爆炸等高应变率加载下的塑性流动行为具有不同于静载下的率-温耦合性和微观机制。航空航天、航海、能源开采、核工业、公共安全、灾害防治等方面的金属结构设计与性能评估需要进行大量的动载实验和数值模拟,建立准确的材料动态本构模型是结构数值模拟可靠性的基础和关键。本文中,总结了金属材料的率-温耦合变形行为及内在机理,回顾了金属动态本构关系研究的起源与发展脉络,分别针对唯象模型、具有物理基础的模型和人工神经网络模型进行了详细介绍和横向比较。唯象模型和人工神经网络模型分别因易应用和高预测精度而受到青睐,基于物理概念的宏观连续介质模型可以描述体现内部演化的真实物理量,从而涵盖更大的应变范围,更好地反映应变率、温度和应变的影响机制。

  相似文献   

5.
6.
罗渝松  李伟兵  陈志闯  王晓鸣  李文彬 《爆炸与冲击》2020,40(10):104101-1-104101-10

针对内爆炸载荷下膨胀态金属柱壳的回收问题,设计了冻结回收试验方法,实现了起爆后不同时刻金属柱壳的冻结回收。基于一体式壳体提出了3种改进结构,并分别对4种柱壳结构在内爆载荷下的膨胀断裂过程进行数值模拟。结果表明,两段式结构最有利于减小非起爆端对预期回收中间段壳体的影响。根据选定的最优壳体结构和金属柱壳在起爆后不同时刻的膨胀外形特征,设计与之匹配的冻结回收装置并进行冻结回收试验。试验结果表明,设计的冻结回收试验方法可以实现膨胀态金属柱壳的回收,回收壳体的轴向和径向尺寸与设计理想值符合较好,整体误差可控制在10%以内。

  相似文献   

7.
The accumulation of local and bulk damage in D16 AT and 1201 T1 aluminum alloys used in aircraft engineering is studied. The local damage level is calculated from data of thermoactivation analysis of the residual life of D16 AT alloy specimens after preliminary plastic deformation. The bulk damage level is determined from the elastic-modulus defect by measuring the natural frequency of 1201 T1 alloy specimens. Life tests of the specimens were performed at constant tensile loads and elevated temperatures. The dependence of the local damage on preliminary plastic strain at room temperature is obtained. The residual life of the specimens is calculated with allowance for the damage to the material in the initial stage of failure and compared with experimental results. Data are given on the kinetics of bulk-damage accumulation in various test regimes. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 1, pp. 172–182, January–February, 2006.  相似文献   

8.
Investigators have viewed the stress rate in two different ways: the material (body-fixed) point of view and the Eulerian point of view. We discuss the Zaremba–Jaumann rate and Oldroyd’s rate from the material viewpoint and apply them to the material formulation of a theory of plasticity for materials undergoing anisotropic plastic deformation. Significant advantages of the material formulation are that the derivation of equations is straight forward, the distortion of yield surface can be easily accounted for, and the issue of self-consistent elastic equation does not arise.  相似文献   

9.
In the first part of this work (Bleyer and de Buhan, 2014), the determination of the macroscopic strength criterion of periodic thin plates has been addressed by means of the yield design homogenization theory and its associated numerical procedures. The present paper aims at using such numerically computed homogenized strength criteria in order to evaluate limit load estimates of global plate structures. The yield line method being a common kinematic approach for the yield design of plates, which enables to obtain upper bound estimates quite efficiently, it is first shown that its extension to the case of complex strength criteria as those calculated from the homogenization method, necessitates the computation of a function depending on one single parameter. A simple analytical example on a reinforced rectangular plate illustrates the simplicity of the method. The case of numerical yield line method being also rapidly mentioned, a more refined finite element-based upper bound approach is also proposed, taking dissipation through curvature as well as angular jumps into account. In this case, an approximation procedure is proposed to treat the curvature term, based upon an algorithm approximating the original macroscopic strength criterion by a convex hull of ellipsoids. Numerical examples are presented to assess the efficiency of the different methods.  相似文献   

10.
Based on a modified Hellinger/Reissner variational principle which includes the equivalent stress, equivalent plastic strain and non-conforming displacement increments as independent variables, a quadrilateral isoparametric hybrid stress element for the analysis of elastoplastic problem is proposed. By this formulation, the yield criterion and flow rule are satisfied in an average sense and greater accuracy can be obtained by using non-conforming displacement. A numerical example is presented to show that the present model has high accuracy and computational effectiveness.This project is supported by the Natural Science Foundation of the State Education Commission.  相似文献   

11.
Relatively few correlations are available for non-Newtonian fluid flows through packed beds, even though such fluids are frequently used in industry. In this paper, a correlation is presented for yield stress fluid flow through packed beds. The correlation is developed by introducing the yield stress model in place of the Newtonian model used in deriving Erguns equation. The resulting model has three parameters that are functions of the geometry and roughness of the particle surfaces. Two of the parameters can be deduced in the limit as the yield stress becomes negligible and the model reduces to Erguns equation for Newtonian fluids. The third model parameter is determined from experimental data. The correlation relates a defined friction factor to the dimensionless Reynolds and Hedstrom numbers and can be used to predict pressure drop for flow of a yield stress fluid through a packed bed of spherical particles. Conditions for flow or no-flow are also determined in the correlation. Comparison of model calculations, between a Newtonian and a yield stress fluid for flow penetration into a packed bed of spheres, shows the yield stress fluid initially performs similar to the Newtonian fluid, at large Reynolds numbers. At lower Reynolds numbers the yield stress effect becomes important and the flow rate significantly decreases when compared to the Newtonian fluid.  相似文献   

12.
This paper gives the stress space and the strain space formulations of the elastoplastic constitutive relations at a singular point on a yield surface, discusses the parallelism of the two space formulations and points out that the strain space formulation has a wider range of applicability.  相似文献   

13.
In the present study, the initial and subsequent yield surfaces in Al 6061-T6511, based on 10 με deviation from linearity definition of yield, are presented. The subsequent yield surfaces are determined during tension, free end torsion, and combined tension–torsion proportional loading paths after reaching different levels of strains. The yield surfaces are also obtained after linear, bi-linear and non-linear unloading paths after finite plastic deformation. The initial yield surface is very close to the von-Mises yield surface and the subsequent yield surfaces undergo translation and distortion. In the case of this low work hardening material, the size of the yield surfaces is smaller and negative cross-effect is observed with finite plastic deformation. The subsequent yield have a usual “nose” in the loading direction and flattened shape in the reverse loading direction; the observed nose is more dominant in the case of tension and combined tension–torsion loading than in torsional loading. The size of the yield surfaces after unloading is smaller than the initial yield surface but larger than subsequent yield surfaces obtained during prior loading, show much smaller cross-effect, and the shape of these yield surfaces depends strongly on the loading and unloading paths. Elastic constants (Young’s and shear moduli) are also measured within each subsequent yield surfaces. Evolution of these constants with finite deformation is also presented. The decrease of the two moduli is found to be much smaller than reported earlier in tension by Cleveland and Ghosh [Cleveland, R.M., Ghosh, A.K., 2002. Inelastic effects on springback in metals. Int. J. Plast. 18, 769–785]. Part-II and III [(Khan et al., 2009a) and (Khan et al., 2009b)] of the papers will include experimental results on annealed 1100 Al (a very high work hardening material) and on both Al alloys (Al6061-T6511 and annealed 1100 Al) in tension- tension stress space, respectively. The results for both cases are quite different than the ones that are presented in this paper.  相似文献   

14.
A viscoplastic model accounting for developing damage in concrete is proposed by assuming the rate of damage to be dependent on viscous strain and stress rates. The damage is measured by a scalar parameter affecting both the yield stress and the material viscosity. For a post-critical range of deformation, the localized mode occurs for which additional constitutive equations are specified. The model is applied to simulate uniaxial strain rate controlled and creep response for the concrete.  相似文献   

15.
基体开裂、纤维拔出、界面剥离等是碳纤维增强复合材料常出现的局部各向异性损伤现象,这些损伤逐渐扩展,削弱了材料的强度和刚度,影响材料的承载能力.对此利用宏微观摄动理论对位移进行双范围渐进展开,在微观位移中引入损伤应变,通过计算损伤应变集中因子,得到了含损伤的均质化损伤弹性常数(宏观有效刚度矩阵),用平均法和混合法检验了无...  相似文献   

16.
高玉魁  陶雪菲 《爆炸与冲击》2021,41(4):041401-1-041401-26
高速冲击表面处理过程中的应变率对金属材料的宏观力学性能和微观组织结构都具有重要影响。根据当前应变率效应的研究成果,从宏观与微观相结合的角度出发,综述了高速冲击表面处理过程中应变率对金属材料强度和塑性的影响规律,并重点阐述了不同应变率下金属材料内部微观组织结构的演变规律,主要包括晶粒结构、绝热剪切带、相变、位错组态和析出相以及变形孪晶等。此外,还分析了组织结构随应变率的演化和微观变形机制的转变对材料力学性能的强化和弱化机理。最后,对高速冲击表面处理梯度组织的变形特点进行了总结。提出了不同组织结构对材料性能影响的综合效应模型,以期为应变率效应的深入研究奠定基础。  相似文献   

17.
建立了考虑周期性位移边界条件的细观体胞模型,对三维编织复合材料的渐进损伤过程进行数值模拟。采用Eshelby-Mori—Tanaka方法计算含损伤裂纹的材料的剐度矩阵,并将有限元网格尺寸和单元裂纹尺寸引入损伤演化方程,有效地降低了模拟结果对有限元网格的依赖程度。通过计算得到了材料应力应变的非线性关系和失效时的极限强度,并分析了材料的破坏机理。结果表明,大编织角材料的破坏模式主要是基体失效与纤维横向拉剪破坏,模拟计算结果与文献中的实验值吻合较好。  相似文献   

18.
Constitutive modelling of metal powder compaction processes is a challenge in view of realistic simulations. To this end, the article under consideration has two objectives: the first goal is to present a new unique and convex single surface yield function for pressure dependent materials, which is also applicable to other areas of granular materials such as soils or concrete. The flexibility is shown at various materials. The yield function is based on a log-interpolation of two known simple yield functions. A convexity proof of the new yield function is provided. The second objective is to propose a new rate-independent finite strain plasticity model for metal powder compaction, which is based on the multiplicative decomposition of the deformation gradient into an elastic and a plastic part with evolution equations for internal variables representing the basic behaviour of powder materials under compaction conditions. These variables are used for the evolution of the yield function in order to represent the compressible hardening behaviour of powder materials. On the basis of the constitutive model, the material parameters are identified at experimental data of copper powder.  相似文献   

19.
A new method of plotting limit stress diagrams is set forth. The method is based on the hypothesis of unified limit diagram invariant to the number of cycles to failure. The unified diagram is given by a transcendental power function whose exponent is considered an additional material constant characterizing the sensitivity of the material to cycle asymmetry (stress ratio). The equations derived on the basis of this function encompass all forms of limit stress diagrams, including convex, nearly rectilinear, and concave ones. The method is tested for a wide range of metallic and composite materials subjected to asymmetric tension-compression, bending, and torsion.Translated from Prikladnaya Mekhanika, Vol. 40, No. 11, pp. 106–116, November 2004.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

20.
在率相关与梯度塑性二阶耦合本构模型的基础上,提出了二、四阶率相关与梯度塑性耦合模型。采用简谐波的分析方法对材料的应变局部化及材料的稳定性进行了研究,得到了二、四阶耦合模型在一维情况下的内尺度律的变化及材料稳定性的关系,得到了波长变化的上下界及材料稳定性的条件;并对其进行了对比性研究,得到材料稳定点移动的规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号