首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Laser-ablated U atoms react with CO in excess argon to produce CUO, which gives rise to 852.5 and 804.3 cm-1 infrared absorptions for the triplet state CUO(Ar)n complex in solid argon at 7 K. Relativistic density functional calculations show that the CUO(Ar) complex is stable and that up to four or five argon atoms can complex to CUO. When 1-3% Xe is added to the argon/CO reagent mixture, strong absorptions appear at 848.0 and 801.3 cm-1 and dominate new four-band progressions, which increase on annealing to 35-50 K as Xe replaces Ar in the intimate coordination sphere. Analogous spectra are obtained with 1-2% Kr added. This work provides evidence for eight distinct CUO(Ng)n(Ar)4-n (Ng = Kr, Xe, n = 1, 2, 3, 4) complexes and the first characterization of neutral complexes involving four noble-gas atoms on one metal center.  相似文献   

3.
An ab initio investigation on CO(2) homoclusters is done at MPWB1K6-31++G(2d) level of theory. Electrostatic guidelines are found to be useful for generating initial structures of (CO(2))(n) clusters. The ab initio minimum energy geometries of (CO(2))(n) with n=2-8 are T shaped, cyclic, trigonal pyramidal, tetragonal pyramidal, tetragonal bipyramidal, pentagonal bipyramidal, and pentagonal bipyramid with one CO(2) molecule attached to it. A test calculation on (CO(2))(20) cluster is also reported. The geometric parameters of the energetically most favored (CO(2))(n) clusters match quite well their experimental counterparts (wherever available) as well as those derived from molecular dynamics studies. The effect of clustering is quantified through the asymmetric C-O stretching frequency shift relative to the single CO(2) molecule. (CO(2))(n) clusters show an increasing blueshift from 1.8 to 9.6 cm(-1) on increasing number of CO(2) molecules from n=2 to 8. The energetics and geometries of CO(2)(Ar)(m) clusters have also been explored at the same level of theory. The geometries for m=1-6 show a predominant T type of the argon-CO(2) molecule interaction. Higher clusters with m=7-12 show that the argon atoms cluster around the oxygen atom after the saturation of the central carbon atom. The CO(2)(Ar)(m) clusters exhibit an increasing redshift in the C-O asymmetric stretch relative to CO(2) molecule of 0.7-5.6 cm(-1) with increasing number of argon atoms through m=1-8.  相似文献   

4.
The fragmentation dynamics of argon clusters ionized by electron impact is investigated for initial cluster sizes up to n = 11 atoms. The dynamics of the argon atoms is modeled using a mixed quantum-classical method in which the nuclei are treated classically and the transitions between electronic states quantum mechanically. The potential-energy surfaces are derived from a diatomics-in-molecules model with the addition of the induced dipole-induced dipole and spin-orbit interactions. The results show extensive and fast fragmentation. The dimer is the most abundant ionic fragment, with a proportion increasing from 66% for n = 2 to a maximum of 95% for n = 6 and then decreasing down to 67% for n = 11. The next abundant fragment is the monomer for n < 7 and the trimer otherwise. The parent ion dissociation lifetimes are all in the range of 1 ps. Long-lived trajectories appear for initial cluster sizes of seven and higher, and favor the formation of the larger fragments (trimers and tetramers). Our results show quantitative agreement with available experimental results concerning the extensive character of the fragmentation: Ar+ and Ar2(+) are the only ionic fragments for sizes up to five atoms; their overall proportion is in quantitative agreement for all the studied sizes; Ar2(+) is the main fragment for all sizes; stable Ar3(+) fragments only appear for n > or = 5, and their proportion increases smoothly with cluster size from there. However, the individual ionic monomer and dimer fragment proportions differ. The experimental ones exhibit oscillations with initial cluster size, with a slight tendency to decrease on average for the monomer. In contrast our results show a monotonic, systematic evolution, similar to what was found in our earlier studies on neon and krypton clusters. Several hypotheses are discussed in order to find the origin of this discrepancy. Finally, the metastable II(1/2)u and II(1/2)g states of Ar2(+) are found to decay with a lifetime of 3.5 and 0.1 ps, respectively, due to spin-orbit coupling. The difference with the commonly accepted microsecond range value for rare-gas dimer ions could originate from the role of autoionizing states in the formation of the parent ions.  相似文献   

5.
Liu Z  Gómez H  Neumark DM 《Faraday discussions》2001,(118):221-32; discussion 233-45
We have investigated effects of solvation on the transition state spectroscopy and dynamics of the I + HI reaction by measuring the anion photoelectron (PE) spectra of the clusters IHI-.Arn (n = 1-5). Argon clustering results in a successive shift of the PE spectra to lower electron kinetic energies with increasing cluster size. It also leads to significant vibrational cooling in the PE spectra and facilitates the observation of features associated with symmetric stretch vibrations and hindered rotational motions of the transition state complex IHI. The shifts in electron binding energy suggest that the first six argon atoms form a ring around the waist of the IHI- anion, just as in I2-.Arn. The spacing of the antisymmetric stretch features evolves with cluster size and is attributed at least in part to perturbation of the IHI- geometry in larger argon clusters. Intensities of features due to hindered rotation are enhanced for larger clusters, possibly due to solvent perturbation of the neutral transition state region.  相似文献   

6.
We study the vibrational relaxation and solvation dynamics in size-selected icosahedral Ar(n)(NO(-)) at 300 K, where NO(-)(X(3)Σ(-)) is in v = 1 and n = 1-12, using a classical dynamics method and an interaction model consisting of detailed host-guest and host-host interactions. Two relaxation time scales are found: (i) the short-time (<200 ps), in which rate is nearly independent of cluster size, and (ii) the ns scale, in which a slow energy transfer process occurs between NO(-) vibration and argon modes at a rate (~10(8) s(-1)) decreasing slightly from n = 12 to 6 and rapidly from n = 5 to 1 (~10(6) s(-1)). In Ar(12)(NO(-)), less than one-quarter of the host atoms sampled evaporate, nearly 60% of evaporation occurring within 200 ps caused by rapid energy transfer from NO(-) at short time. The fraction of evaporation decreases nearly exponentially with increasing evaporation time, but ~16% of evaporation still occurs on a time scale longer than 1 ns. Evaporation from one hemisphere of Ar(12)(NO(-)) dominates the rest. Final cluster sizes commonly produced from the fragmentation of Ar(12)(NO(-)) are n = 6-11 (evaporation of 6-1 atoms) and n = 12 (no evaporation).  相似文献   

7.
In this paper we report on the isotopic effect on the cage-induced excited-state quenching inside small Ar(m) clusters (m<10(2)) solvated in large Ne(N) clusters (N approximately 7.5x10(3)). Excited OH(A)/OD(A) fragments are produced by photodissociation of H2O and D2O molecules and the quenching agents are correspondingly H or D atoms. The decrease of the fluorescence yield with the size of the cluster m>m0 is observed in both cases and it is attributed to the formation of the cage of argon atoms around the doped molecule. Interestingly, more atoms are needed to induce the fluorescence quenching of OD*(A) fragments, m0=21+/-3, compared to the electronically excited state quenching of OH*(A) molecules, 11+/-2. A diffusion model containing two free parameters, the quenching cross section sigmaq and the number of argon atoms forming the cage m0, explains the effect in terms of the residence time of the hydrogen atom inside the cage. We suggest that the melting of the doped rare gas clusters is responsible for the different predissociation dynamics. The quenching cross section obtained from the experimental data is in good agreement with former experiments.  相似文献   

8.
Here we report negative electron affinities of NO(2)(-).(H2O)n clusters (n=0-30) obtained from density functional theory calculations and a simple correction to Koopmans' theorem. The method relies on the calculation of the detachment energy of the monoanion and its highest occupied molecular orbital and lowest unoccupied molecular orbital energies, and explicit calculations on the dianion itself are avoided. A good agreement with resonances in the cross section for neutral production in electron scattering experiments is found for n=0, 1, and 2. We find several isomeric structures of NO(2)(-).(H2O)2 of similar energy that elucidate the interplay between water-water and ion-water interactions. The topology is predicted to influence the electron affinity by 0.5 and 0.4 eV for NO(2)(-).(H2O) and NO(2)(-).(H2O)2, respectively. The electron affinity of larger clusters is shown to follow a (n+delta)-1/3 dependence, where delta=3 represents the number of water molecules that in volume, could replace NO(2) (-).  相似文献   

9.
Singly and doubly charged manganese-water cations, and their mixed complexes with attached argon atoms, are produced by laser vaporization in a pulsed nozzle source. Complexes of the form Mn(+)(H(2)O)Ar(n) (n = 1-4) and Mn(2+)(H(2)O)Ar(4) are studied via mass-selected infrared photodissociation spectroscopy, detected in the mass channels corresponding to the elimination of argon. Sharp resonances are detected for all complexes in the region of the symmetric and asymmetric stretch vibrations of water. With the guidance of density functional theory computations, specific vibrational band resonances are assigned to complexes having different argon attachment configurations. In the small singly charged complexes, argon adds first to the metal ion site and later in larger clusters to the hydrogens of water. The doubly charged complex has argon only on the metal ion. Vibrations in all of these complexes are shifted to lower frequencies than those of the free water molecule. These shifts are greater when argon is attached to hydrogen and also greater for the dication compared to the singly charged species. Cation binding also causes the IR intensities for water vibrations to be much greater than those of the free water molecule, and the relative intensities are greater for the symmetric stretch than the asymmetric stretch. This latter effect is also enhanced for the dication complex.  相似文献   

10.
Ar clustering dynamics around the metal-benzene sandwich complex, bis(eta (6)-benzene)chromium: Cr(Bz) 2, is found to occur in two distinct regimes. The shift of the ionization potential (IP) upon the addition of Ar is measured to be 151 cm (-1), and it is constant until the number of Ar solvents ( n) becomes 6. The IP shift per Ar is found to be suddenly decreased to 82 cm (-1) for the clusters of n = 7-12. The cluster distribution indicates that the n = 6 cluster is most populated in the molecular beam. These experimental findings with the aid of ab initio calculation indicate that the first six Ar solvent molecules are attached to top and bottom of Cr(Bz) 2 to give the robust structure for the Cr(Bz) 2-Ar 6 cluster whereas the next six Ar molecules are gathered on the side of the solute core to give the highly symmetric structure of the Cr(Bz) 2-Ar 12 cluster.  相似文献   

11.
Xu Q  Jiang L 《Inorganic chemistry》2006,45(21):8648-8654
Reactions of laser-ablated tin and lead atoms with nitric oxide molecules in solid argon and neon have been investigated using matrix-isolation infrared spectroscopy. In the argon experiments, absorptions at 1560.1, 1625.8, and 1486.7 cm(-1) are assigned to the N-O stretching vibrations of the SnNO and Sn(NO)2 molecules, and absorptions at 1541.9, 1630.0, 1481.8, and 1457.5 cm(-1) are assigned to the N-O stretching vibrations of the PbNO, Pb(NO)2, and PbNO- molecules on the basis of isotopic shifts and splitting patterns. The present neon experiments only produce neutral tin and lead mononitrosyls. Density functional theory calculations have been performed on these tin and lead nitrosyls. The good agreement between the experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts substantiates the identification of these nitrosyls from the matrix infrared spectra.  相似文献   

12.
Electron capture dynamics of SO(2)-H(2)O(Ar)(n) complexes (n = 0-2) have been investigated by means of direct ab initio molecular dynamics (MD) method in order to elucidate the effects of solvent argon on the reaction dynamics of SO(2)-H(2)O. The neutral complex of SO(2)-H(2)O has a C(s) symmetry, and the sulfur of SO(2) interacts with the oxygen of H(2)O with an eclipsed form. In the SO(2)-H(2)O(Ar)(n) complexes, the dipole of H(2)O interacts with the argon atoms in the most stable structure. Following the electron capture of the complex SO(2)-H(2)O, the complex anion SO(2)(-)(H(2)O) is dissociated directly into SO(2)(-) + H(2)O. On the other hand, the electron capture of SO(2)(H(2)O)(Ar)(n) argon complex (n = 1-2) leads to the anion-water complex SO(2)(-)(H(2)O) because the collision of H(2)O with the Ar atom causes a rebound of H(2)O from Ar atom to the SO(2)(-) anion. The argon solvent enhanced the SO(2)(-)(H(2)O) complex formation. The reaction mechanism of SO(2)(H(2)O) in the participation of argon atoms was discussed on the basis of the present results.  相似文献   

13.
The specific influence of X(-) ions (X = F,Cl, Br, I) in the solvation process of halide-benzene (X(-)-Bz) ionic heterodimers by Ar atoms is investigated by means of molecular dynamic (MD) simulations. The gradual evolution from cluster rearrangement to solvation dynamics is discussed by considering ensembles of n (n = 1-15 and n = 30) Ar atoms around the X(-)-Bz stable ionic dimers. The potential energy surfaces employed are based on an atom/ion-atom and atom/ion-bond decomposition, which has been developed previously by some of the authors. The outcome of the dynamics is analyzed by employing radial distribution functions (RDF) and tridimensional (3D) probability densities.  相似文献   

14.
Ion-molecule complexes of the form Mg(H2O)Ar(n)+ (n = 1-8) are produced by laser vaporization in a pulsed-nozzle cluster source. These complexes are mass-selected and studied with infrared photodissociation spectroscopy in the O-H stretch region. The spectra are interpreted with the aid of ab initio calculations on the n = 1-5 complexes, including examination of various isomeric structures. The combined spectroscopic and theoretical studies reveal the presence of multiple isomeric structures at each cluster size, as the argon atoms assemble around the Mg(+)(H2O) unit. Distinct infrared resonances are measured for argon-on-metal, argon-on-OH and argon-on-two-OH isomers.  相似文献   

15.
Molecular dynamics calculations have been performed to simulate the low energy collision (0.2 eV) of a rare gas atom (He, Ar, Xe) with a cluster of 125 argon atoms. Depending on its relative mass to argon, the projectile is either deflected (He) or captured (Ar, Xe) by the argon cluster. We have determined the deflection function of the He projectile that is scattered, and for Xe we have determined wether it stays near the surface of the cluster or migrates inside. These results have been discussed in the light of very simple models.  相似文献   

16.
Laser-ablated Au atoms have been co-deposited with CO molecules in solid argon to produce gold carbonyls. In addition to the previously reported Au(CO)n (n = 1, 2) and Au2(CO)2 molecules, small gold cluster monocarbonyls Au(n)CO (n = 2-5) are formed on sample annealing and characterized using infrared spectroscopy on the basis of the results of the isotopic substitution and CO concentration change and comparison with theoretical predictions. Of particular interest is that the mononuclear gold carbonyls, Au(CO)n (n = 1, 2), are favored under the experimental conditions of higher CO concentration and lower laser energy, whereas the yields of the gold cluster carbonyls, Au(n)CO (n = 2-5) and Au2(CO)2, remarkably increase with lower CO concentration and higher laser power. Density functional theory (DFT) calculations have been performed on these molecules and the corresponding small naked gold clusters. The identities of these gold carbonyls Au(n)CO (n = 1-5) and Au(n)(CO)2 (n = 1, 2) are confirmed by the good agreement between the experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts.  相似文献   

17.
Infrared predissociation (IRPD) spectra of Li(+)(CH(4))(1)Ar(n), n = 1-6, clusters are reported in the C-H stretching region from 2800 to 3100 cm(-1). The Li(+) electric field perturbs CH(4) lifting its tetrahedral symmetry and gives rise to multiple IR active modes. The observed bands arise from the totally symmetric vibrational mode, v(1), and the triple degenerate vibrational mode, v(3). Each band is shifted to lower frequency relative to the unperturbed CH(4) values. As the number of argon atoms is increased, the C-H red shift becomes less pronounced until the bands are essentially unchanged from n = 5 to n = 6. For n = 6, additional vibrational features were observed which suggested the presence of an additional conformer. By monitoring different photodissociation loss channels (loss of three Ar or loss of CH(4)), one conformer was uniquely associated with the CH(4) loss channel, with two bands at 2914 and 3017 cm(-1), values nearly identical to the neutral CH(4) gas-phase v(1) and v(3) frequencies. With supporting ab initio calculations, the two conformers were identified, both with a first solvent shell size of six. The major conformer had CH(4) in the first shell, while the conformer exclusively present in the CH(4) loss channel had six argons in the first shell and CH(4) in the second shell. This conformer is +11.89 kJ/mol higher in energy than the minimum energy conformer at the MP2/aug-cc-pVDZ level. B3LYP/6-31+G* level vibrational frequencies and MP2/aug-cc-pVDZ level single-point binding energies, D(e) (kJ/mol), are reported to support the interpretation of the experimental data.  相似文献   

18.
Reactions of laser-ablated Sc atoms with H2O2 molecules or H2 and O2 mixtures in excess solid argon gives four major new products, which are identified from concentration dependence, isotopic substitution, the effect of electron trap doping, and comparison to frequencies calculated by the B3LYP density functional. These are the Sc(OH)3 trihydroxide, the Sc(OH)2 dihydroxide, the Sc(OH)2+ cation, and the trihydroxide anhydride HOScO molecule. The Sc(OH)2+ cation forms a complex in solid argon that is effectively modeled by calculations for the [(Ar)4Sc(OH)2]+ cation including frequency shifts between the neutral and cation dihydroxides. Finally, the Sc(OH)4- anion is detected in H2O2 experiments.  相似文献   

19.
Uranium atoms excited by laser ablation react with CO in excess neon to produce the novel CUO molecule, which forms distinct Ng complexes (Ng = Ar, Kr, Xe) when the heavier noble gases are added. The CUO(Ng) complexes are identified through CO isotopic and Ng substitution on the neon matrix infrared spectra and by comparison to DFT frequency calculations. The U-C and U-O stretching frequencies of CUO(Ng) complexes are slightly red-shifted from frequencies for the (1)Sigma(+) CUO ground state, which identifies singlet ground state CUO(Ng) complexes. In solid neon the CUO molecule is also a complex CUO(Ne)(n), and the CUO(Ne)(n-1)(Ng) complexes are likewise specified. The next singlet CUO(Ne)(x)(Ng)(2) complexes in excess neon follow in like manner. However, the higher CUO(Ne)(x)(Ng)(n) complex (n = 3, 4) stretching modes approach pure argon matrix CUO(Ar)(n) values and isotopic behavior, which are characterized as triplet ground state complexes by DFT frequency calculations. This work suggests that the singlet-triplet crossing occurs with 3 Ar, 3 Kr, or 4 Xe and a balance of Ne atoms coordinated to CUO in the neon matrix host.  相似文献   

20.
The structural properties of some of the smaller ionic clusters of argon atoms containing the atomic impurity H-, ArnH- with n from 2 up to 7, are examined using different modeling for the interactions within each cluster and by employing different theoretical treatments, both classical and quantum, for the energetics. The same calculations are also carried out for the corresponding neutral homogeneous clusters Ar(n+1). The results of the calculations, the physical reliability of the interactions modeling, and the similarities and the difference between the anionic and the neutral complexes are discussed in some detail. The emerging picture shows that, due to specific features of the employed atom-atom potentials, the ArnH- and Ar(n+1) clusters present very similar structures, where the H- dopant substitutes for one of the outer Ar atoms but does not undergo as yet solvation within such small clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号