首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
Microstructural properties of liquid and amorphous SiO2 nanoparticles have been investigated via molecular dynamics (MD) simulations with the interatomic potentials that have weak Coulomb interaction and Morse-type short-range interaction under non-periodic boundary conditions. Structural properties of spherical nanoparticles with different sizes of 2, 4 and 6 nm obtained at 3500 K have been studied through partial radial distribution functions (PRDFs), coordination number and bond-angle distributions, and compared with those observed in the bulk. The core and surface structures of liquid SiO2 nanoparticles have been studied in detail. We found significant size effects on structure of nanoparticles. Calculations also show that if the size is larger than 4 nm, liquid SiO2 nanoparticles at the temperature of 3500 K have a lightly distorted tetrahedral network structure with the mean coordination number ZSi-O≈4.0 and ZO-Si≈2.0 like those observed in the bulk. Moreover, temperature dependence of structural defects and SiOx stoichiometry in nanoparticles on cooling from the melt has been found and presented.  相似文献   

2.
The optical properties of metallic tin nanoparticles embedded in silicon-based host materials were studied. Thin films containing the nanoparticles were produced using RF magnetron sputtering followed by ex situ heat treatment. Transmission electron microscopy was used to determine the nanoparticle shape and size distribution; spherical, metallic tin nanoparticles were always found. The presence of a localized surface plasmon resonance in the nanoparticles was observed when SiO2 and amorphous silicon were the host materials. Optical spectroscopy revealed that the localized surface plasmon resonance is at approximately 5.5 eV for tin nanoparticles in SiO2, and at approximately 2.5 eV in amorphous silicon. The size of the tin nanoparticles in SiO2 can be varied by changing the tin content of the films; this was used to tune the localized surface plasmon resonance.  相似文献   

3.
Chen H  Cui S  Tu Z  Gu Y  Chi X 《Journal of fluorescence》2012,22(2):699-706
CdHgTe/SiO2 nanoparticles were prepared by SiO2 capping on the surface of CdHgTe QDs. The characteristics, such as optical spectra, photostability, size and cell toxicity were investigated. The dynamic distribution of CdHgTe/SiO2 nanoparticles was in vivo monitored by near infrared fluorescence imaging system. CdHgTe/SiO2 nanoparticles acted as a novel fluorescence probe have a maximum fluorescence emission of 785 nm and high photo-stability. The hydrodynamic diameter of CdHgTe/SiO2 nanoparticles could be adjusted to 122.3 nm. Compared to CdHgTe QDs, inhibitory effects of CdHgTe/SiO2 nanoparticles on proliferation of HCT116 cells decreased to a certain extent. CdHgTe/SiO2 nanoparticles had their specific dynamic distribution behavior, which provided new perspectives for bio-distribution of nanoparticles.  相似文献   

4.
We report on the synthesis of the well-defined structurally silica-nonlinear polymer core-shell nanoparticles via the surface-initiated atom transfer radical polymerization. At first, 3-(2-bromoisobutyramido)propyl(triethoxy)-silane (the ATRP initiator) was prepared by the reaction of 3-aminopropyltriethoxysilane with 2-bromoisobutyryl bromide. The ATRP initiator was covalently attached onto the nanosilica surface. The subsequent ATRP of HEMA from the initiator-attached SiO2 surface was carried out in order to afforded functional nanoparticles bearing a hydroxyl moiety at the chain end, SiO2-g-PHEMA-Br. The esterification reaction of pendent hydroxyl moieties of PHEMA segment with 2-bromoisobutyryl bromide afforded the SiO2-based multifunctional initiator, SiO2-g-PHEMA(-Br)-Br, bearing one bromine moiety on each monomer repeating unit within the PHEMA segment. Finally, the synthesis of SiO2-g-PHEMA(-g-PSt)-b-PSt was accomplished by the ATRP of St monomer using SiO2-g-PHEMA(-Br)-Br as multifunctional initiator. These organic/inorganic hybrid materials have been extensively characterized by FT-IR, XPS, TG, and TEM.  相似文献   

5.
The effect of acetylene partial pressure on the structural and morphological properties of multi-walled carbon nanotubes (MWCNTs) synthesized by CVD on iron nanoparticles dispersed in a SiO2 matrix as catalyst was investigated. The general growing conditions were: 110 cm3/min flow rate, 690 °C synthesis temperature, 180 Torr over pressure and two gas compositions: 2.5% and 10% C2H2/N2. The catalyst and nanotubes were characterized by HR-TEM, SEM and DRX. TGA and DTA were also carried out to study degradation stages of synthesized CNTs. MWCNTs synthesized with low acetylene concentration are more regular and with a lower amount of amorphous carbon than those synthesized with a high concentration. During the synthesis of CNTs, amorphous carbon nanoparticles nucleate on the external wall of the nanotubes. At high acetylene concentration carbon nanoparticles grow, covering all CNTs’ surface, forming a compact coating. The combination of CNTs with this coating of amorphous carbon nanoparticles lead to a material with high decomposition temperature.  相似文献   

6.
对于埋嵌在薄膜材料中的纳米颗粒,在其生长过程中总是不可避免地伴随着应变场的产生,而这种应变场的分布能反映纳米颗粒的结构变化,纳米颗粒结构与它的物理性能有重要的关系.研究埋嵌在不同薄膜材料中的纳米颗粒生长过程中的应变场分布对于调控纳米颗粒的物理性能有着重要的意义.本文利用有限元算法分别计算了埋嵌在非晶氧化铝薄膜和非晶二氧化硅薄膜材料中的砷化镓纳米颗粒生长过程中的应变场分布.砷化镓纳米颗粒在以上两薄膜材料生长过程中都受到非均匀偏应变作用.对于埋嵌在氧化铝薄膜中的砷化镓纳米颗粒,其生长过程中,纳米颗粒内部受到的应变大于纳米颗粒表面受到的应变;而对于埋嵌在二氧化硅薄膜中的砷化镓纳米颗粒,纳米颗粒内部受到的应变小于纳米颗粒表面受到的应变.选择砷化镓纳米颗粒生长的薄膜材料可以调控纳米颗粒生长过程中的应变场分布,从而进一步调控纳米颗粒的晶格结构和形貌及其物理性能.  相似文献   

7.
High-pressure DC magnetron sputtering was used for the deposition of cobalt on amorphous carbon (a-C) and SiO2. Deposition conditions, substrate surface morphology and annealing parameters are investigated in order to promote the synthesis of large arrays of nanoparticles, with regular size and shape. Uniformly distributed Co nanoparticles a few nanometers in size were formed under annealing at 700°C in H2. Particle nucleation and growth are discussed based on X-ray photoelectron spectroscopy, transmission and scanning electron microscopy and kinetic Monte Carlo modeling (KMC).  相似文献   

8.
A versatile method was developed for the chain-end functionalization of the grafted polymer chains for surface modification of nanoparticles with functionalized groups through a combination of surface-initiated atom-transfer radical polymerization (ATRP) and Huisgen [3 + 2] cycloaddition. First, the surface of SiO2 nanoparticles was modified with poly(methyl methacrylate) (PMMA) brushes via the “grafting from” approach. The terminal bromides of PMMA-grafted SiO2 nanoparticles were then transformed into an azide function by nucleophilic substitution. These azido-terminated PMMA brushes on the nanoparticle surface were reacted with alkyne-terminated functional end group via Huisgen [3 + 2] cycloaddition. FTIR and 1H NMR spectra indicated quantitative transformation of the chain ends of PMMA brushes onto SiO2 nanoparticles into the desired functional group. And, the dispersibility of the end-functional polymer-grafted SiO2 nanoparticles was investigated with a transmission electron microscope (TEM).  相似文献   

9.
The formation of nanoparticles containing zinc in Si(001) substrates by the implantation of 64Zn+ ions and subsequent annealing in dry oxygen at 800 and 1000°C for 1 h is studied. The structure of the samples is studied by high-resolution transmission electron microscopy, X-ray diffraction, and photoluminescence spectroscopy. 20-nm zinc nanoparticles located at a depth of about 50 nm are revealed in the as-implanted sample. 10–20-nm pores are observed in the surface layer. Annealing leads to oxidation of the Zn nanoparticles to the Zn2SiO4 state. It is shown that the oxidation of Zn nanoparticles begins on their surface and at an annealing temperature of 800°C results in the formation of nanoparticles with the “соre–shell” structure. The X-ray diffraction technique shows simultaneously two Zn and Zn2SiO4 phases. ZnO nanoparticles are not formed under the given implantation and annealing conditions.  相似文献   

10.
CeO2@SiO2 (core@shell) nanoparticles were prepared by means of chemical precipitation technique. Results from X-ray diffraction, transmission electron microscopy (TEM), and Zeta-potential analyses provide strong microscopic and spectroscopic evidences to prove that CeO2 particles have been encapsulated inside amorphous SiO2 shell. As revealed from TEM investigations, the average grain size of CeO2@SiO2 is significantly smaller than that of uncoated CeO2 nanoparticles prepared under the same conditions, indicating it is an effective method to restrict the grain enlargement of nanocrystalline CeO2 by coating a thin layer of SiO2 at elevated temperatures. The CeO2@SiO2 nanoparticles display a similar surface electric character behavior to that of SiO2, and its dispersibility in water is improved.  相似文献   

11.
SiO2 nanowires gain scientific and technological interest in application fields ranging from nano-electronics, optics and photonics to bio-sensing. Furthermore, the SiO2 nanowires chemical and physical properties, and so their performances in devices, can be enhanced if decorated by metal nanoparticles (such Au) due to local plasmonic effects.In the present paper, we propose a simple, low-cost and high-throughput three-steps methodology for the mass-production of Au nanoparticles coated SiO2 nanowires. It is based on (1) production of the SiO2 nanowires on Si surface by solid state reaction of an Au film with the Si substrate at high temperature; (2) sputtering deposition of Au on the SiO2 nanowires to obtain the nanowires coated by an Au film; and (3) furnace annealing processes to induce the Au film dewetting on the SiO2 nanowires surface. Using scanning electron microscopy analyses, we followed the change of the Au nanoparticles mean versus the annealing time extracting values for the characteristic activation energy of the dewetting process of the Au film on the SiO2 nanowires surface. Such a study can allow the tuning of the nanowires/nanoparticles sizes for desired technological applications.  相似文献   

12.
We have investigated the microstructure of amorphous Fe2O3 nanoparticles by using molecular dynamics (MD) simulations. Non-periodic boundary conditions with Born-Mayer type pair potentials were used to simulate a spherical model of different diameters of 2, 3, 4 and 5 nm. Structural properties of an amorphous model obtained at 350 K have been analyzed in detail through the partial radial distribution functions (PRPFs), coordination number distributions, bond-angle distributions and interatomic distances. Calculations showed that structural characteristics of the model are in qualitative agreement with the experimental data. The observation of a large amount of structural defects as the particle size is decreased suggested that surface structure strongly depends on the size of nanoparticles. In addition, surface structure of amorphous Fe2O3 nanoparticles have been studied and compared with that observed in the core and in the bulk counterpart. Radial density profiles and stoichiometry in morphous Fe2O3 nanoparticles were also found and discussed.  相似文献   

13.
《Composite Interfaces》2013,20(5-6):505-517
SiO2 nanoparticles were synthesized from different three precursors, namely, TEOS (tetraethyl orthosilicate), sodium metasilicate and sodium silicate. First, SiO2 nanoparticles were prepared by a controlled hydrolysis of TEOS. In another method, SiO2nanoparticles were prepared by precipitation in an emulsion medium from sodium metasilicate and hydrochloric acid solution. Finally, SiO2 nanoparticles were also synthesized from sodium silicate by an emulsion method. In this study, we concentrated on dispersion and compatibility between nanosized SiO2 particles and EVA (ethylene vinyl acetate). Therefore, surface modification of synthesized SiO2 nanoparticles was accomplished with MPS (3-mercaptopropyl trimethoxysilane) to enhance homogeneous dispersion and compatibility between the obtained SiO2 nanoparticles and EVA. Finally, nanocomposites of surface treated SiO2 nanoparticles and EVA were prepared. By inserting the MPS-coated SiO2 nanoparticles into EVA, abrasion resistance and hardness were increased remarkably. On the other hand, insertion of SiO2 nanoparticles barely decreased original tensile strength and elongation of EVA. Consequently, MPS-coated SiO2/EVA nanocomposite can have an improved abrasion resistance and hardness compared with raw EVA, without decrease tensile strength and elongation. The characterization of synthesized SiO2 nanoparticles and their nanocomposite with EVA was conducted by TEM, SEM, FTIR photography and mechanical property tests such as abrasion, hardness, tensile strength and elongation.  相似文献   

14.
Photoluminescence of amorphous SiO2 nanoparticles compressed in the form of tablets is studied under exposure to UV radiation. The observed luminescence spectrum is a broad band extending from the excitation wavelength to 700 nm and with a maximum at ~470 nm. The spectrum can be decomposed into two Gaussian components with maxima at ~460 and ~530 nm. As the pressure applied for sample preparation increases, the integrated intensities of these bands change in opposite directions—the intensity of the short-wavelength band increases, while that of the long-wavelength band decreases. It is concluded that these bands are due to different luminescence centers of silicon dioxide located on the surface and in the bulk of SiO2 nanoparticles.  相似文献   

15.
Monte Carlo simulations were carried out on amorphous titanium dioxide (TiO2) for both bulk and hydroxylated nanoparticles with particle sizes ranging from 1 to 10 nm. The potential developed by the Matsui and Akaogi (MA) was used to model the interatomic interactions of TiO2 in both cases (bulk and nanoparticles). Besides, Angular and Morse potentials proposed by the Tether, Cormack, Du et. al. (TCD) were introduced to model the interactions of hydroxyl groups on the TiO2 surfaces, i.e., the Ti-O-H groups with an experimental and theoretical angles of 125 o . The bulk system was developed using periodic boundary conditions. The TiO2 nanoparticles were extracted by applying a spherical cut section in the bulk TiO2 melt structure to obtain the required size. Free valences on the nanoparticle surfaces were saturated via additional hydroxyl groups and then quenched to 300 K under free boundary conditions. The bulk and surface properties of the nanoparticles were calculated at 300 K and zero pressure and characterized via radial distribution functions, bond angle distributions, bond distances, coordination numbers, OH group concentrations and radial density profiles. In addition, to understand the difference in properties of amorphous hydroxylated TiO2 nanoparticles and bulk amorphous TiO2, a comparative study was done at the same thermodynamic conditions. The study shows that the bulk properties of amorphous hydroxylated TiO2 nanoparticles are strongly size-dependent and different from those of the bulk TiO2. As expected, increasing the particle size leads to an approach of the particle’s bulk properties to the bulk properties of the (quasi) infinite system. The size effects show that decreasing the particle size results in increasing the surface effects and surface OH group concentrations. Accordingly, small-sized TiO2 nanoparticles have higher surface OH group concentrations and larger surface effects than large-sized TiO2 nanoparticles. Larger surface effects result significant changes in their bond angles, bond distances, and coordination numbers. The simulation results of the surface properties reveal that the surface titanium atoms in the TiO2 nanoparticles have the capability of accommodating up to 5 hydroxyl groups. The mean surface hydroxyl group density of the amorphous TiO2 spherical nanoparticles is estimated to be around 8.1/nm 2, which lies in the range of 8–16/nm 2, found by experimental and other simulation studies. Details of the modelling, simulations results and the study are presented in this paper.  相似文献   

16.
A simple in situ flame coating method has been developed by designing a new type of coflow diffusion flame burner having a sliding unit. The sliding unit was shown to be very effective in finding a right position where the precursor for coating layer should meet with core particles. SiO2-coated TiO2 nanoparticles were first prepared and whether most surfaces of particles were coated was examined by both direct observation of particles through a transmission electron microscope and Zeta potential measurements. Mean core sizes varied from 28 to 109 nm and mean coating thickness was about 2.4 nm for silica-coated titania particles. By simply changing chemical precursors, we demonstrated that SiO2-coated SnO2, SnO2-coated TiO2, SiO2–SnO2-coated TiO2 nanoparticles could be also synthesized.  相似文献   

17.
采用离子注入技术将Zn离子注入Si(001)基片,并在大气环境下加热氧化制备了ZnO纳米团簇.利用电子探针、薄膜X射线衍射仪、原子力显微镜和透射电子显微镜,对注入和热氧化后的薄膜成分、表面形貌和微观结构进行表征,探讨了热氧化温度以及注入剂量对纳米ZnO团簇的成核过程及生长行为的影响.结果表明,Zn离子注入到Si基片表面后形成了Zn纳米团簇,热氧化过程中Zn离子向表面扩散,在表面SiO2非晶层和Si基片多晶区的界面处形成纳米团簇.热氧化温度是影响ZnO纳米团簇结晶质量的一个重要参数.随着热氧化温度的升高,金属Zn的衍射峰强度逐渐变弱并消失,而ZnO的(101)衍射峰强度逐渐增强.当热氧化温度高于800 ℃以后,ZnO与SiO2之间开始发生化学反应形成Zn2SiO4. 关键词: ZnO纳米团簇 离子注入 微观结构 形貌分析  相似文献   

18.
Optical properties of Au nanoparticle composites and a grid structure of Cu nanoparticle composite were studied. Negative ion implantation was applied to synthesize Au and Cu nanoparticles in amorphous SiO2 and Al2O3. Au nanoparticles were embedded within a depth of 30 nm by 60keV Au implantation. The surface plasmon resonance (SPR) of Au:SiO2 and Au: Al2O3 composites shifted to red and to blue, respectively, compared to calculated ones by the Mie theory. Optical nonlinearity was measured with pump-probe femtosecond spectroscopy and the transient spectrum of Au: Al2O3 composite presented a large red shift from the SPR peak. Image mapping of far-field transmitted intensity of Cu-implanted SiO2 with a fine grid structure drawn by laser-lithography was observed by a scanning near-field optical microscopy (SNOM) system.  相似文献   

19.
Conversion electron Mössbauer spectroscopy (CEMS) at room and low temperature has been used to study thin SiO2 films implanted with Sn atoms and annealed at 900°C. This work focuses on the determination of the Debye temperature (θ D) and Debye–Waller factors (f) of the Sn oxidized phases formed in this system. The Sn2+ oxidation state is the predominant one, even if a small percentage of the Sn atoms is in the Sn4+ oxidation state. The real Sn-oxides fractions are calculated by normalizing the resonant areas to the f values, as calculated from the temperature dependence of the related resonant areas within a Debye model. The Sn4+ oxidation state, possibly related to Sn atoms close to the SiO2 surface, represents less than 20% of the Sn atoms. For the Sn2+ oxidation state, two different electronics configurations a and b, having different Debye temperature and hyperfine parameters are identified. The component a, with a lower θ D (137 K), is the predominant one and might be related to small (2–3 nm) amorphous SnO x clusters in the SiO2 matrix. The component b could be related to substitutional Sn atoms in the SiO2 network forming a local Sn environment similar to the SnO amorphous compound.  相似文献   

20.
Polymeric matrices with stabilized metallic nanoparticles constitute an important class of nanostructured materials, because polymer technology allows fabrication of components with various electronic, magnetic and mechanical properties. The porous cellulose matrix has been shown to be a useful support material for platinum, palladium, silver, copper and nickel nanoparticles. In the present study, nanosized cobalt particles with enhanced magnetic properties were made by chemical reduction within a microcrystalline cellulose (MCC) matrix. Two different chemical reducers, NaBH4 and NaH2PO2, were used, and the so-formed nanoparticles were characterized with X-ray absorption spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. These experimental techniques were used to gain insight into the effect of different synthesis routes on structural properties of the nanoparticles. Magnetic properties of the nanoparticles were studied using a vibrating sample magnetometer. Particles made via the NaBH4 reduction were amorphous Co-B or Co oxide composites with diminished ferromagnetic behaviour and particles made via the NaH2PO2 reduction were well-ordered ferromagnetic hcp cobalt nanocrystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号