首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Trans-di(ortho-tolylethynyl)bis(dimethylphenylphosphine)palladium(II) reacts above −20 °C with the iodonium reagent IPhCl2 to give predominantly o-Tol-CC-Cl, above 15 °C with IPh2(OTf) (OTf = triflate) to give o-Tol-CC-Ph and (o-Tol-CC)2 in ca. 3:1 ratio, and above 10 °C with IPh(CCR)(OTf) (R = But, SiMe3) to give predominantly o-Tol-CC-CC-R and (o-Tol-CC)2. 31P NMR spectra provide evidence for detection of intermediates. The complexes trans-[Pd(CC-o-Tol)2(PMe2Ph)2] and trans-[PdCl(CC-o-Tol)(PMe2Ph)2] are obtained on reaction of trans-[PdCl2(PMe2Ph)2] with Li(CC-o-Tol) and o-Tol-CCH/Et3N, respectively, and have been characterised by X-ray crystallography.  相似文献   

2.
Complexes M(CCCSiMe3)(CO)2Tp′ (Tp′ = Tp [HB(pz)3], M = Mo 2, W 4; Tp′ = Tp [HB(dmpz)3], M = Mo 3) are obtained from M(CCCSiMe3)(O2CCF3)(CO)2(tmeda) (1) and K[Tp′].Reactions of 2 or 4 with AuCl(PPh3)/K2CO3 in MeOH afforded M{CCCAu(PPh3)}(CO)2Tp′ (M = Mo 5, W 6) containing C3 chains linking the Group 6 metal and gold centres.In turn, the gold complexes react with Co33-CBr)(μ-dppm)(CO)7 to give the C4-bridged {Tp(OC)2M}CCCC{Co3(μ-dppm)(CO)7} (M = Mo 7, W 8), while Mo(CBr)(CO)2Tp and Co33-C(CC)2Au(PPh3)}(μ-dppm)(CO)7 give {Tp(OC)2Mo}C(CC)2C{Co3(μ-dppm)(CO)7} (9) via a phosphine-gold(I) halide elimination reaction. The C3 complexes Tp′(OC)2MCCCRu(dppe)Cp (Tp′ = Tp, M = Mo 10, W 11; Tp′ = Tp, M = Mo 12) were obtained from 2-4 and RuCl(dppe)Cp via KF-induced metalla-desilylation reactions. Reactions between Mo(CBr)(CO)2Tp and Ru{(CC)nAu(PPh3)}(dppe)Cp (n = 2, 3) afforded {Tp(OC)2Mo}C(CC)n{Ru(dppe)Cp} (n = 2 13, 3 14), containing C5 and C7 chains, respectively. Single-crystal X-ray structure determinations of 1, 2, 7, 8, 9 and 12 are reported.  相似文献   

3.
The first luminescent rhenium(I)-gold(I) hetero organometallics, Re{phenAu(PPh3)}(CO)3Cl (3) and Re{(PPh3)AuphenAu(PPh3)}(CO)3Cl (4), have been prepared using the gold(I) complex AuCl(PPh3) (PPh3 = triphenylphosphine) and the novel rhenium(I) complexes Re(phenH)(CO)3Cl (5) (phenH = 3-ethynyl-1,10-phenanthroline) or Re(HphenH)(CO)3Cl (6) (HphenH = 3,8-bis(ethynyl)-1,10-phenanthroline). All the present rhenium(I) complexes 3-6 were revealed to possess a facial configuration (fac-isomer) with respect to the three carbonyl ligands. The main frameworks for these new gold(I) organometallics were constructed by the Au-C σ-bonding (with the η1-type coordination) between the ethynylphenanthrolines and the Au(I) phosphine unit. Re(I)-Au(I) heterometallics 3 and 4 have shown single phosphorescence from the 3MLCT excited state and this observation can be interpreted in terms of the efficient intramolecular energy transfer from the Au(I) unit to the Re(I) unit.  相似文献   

4.
The compounds Ru(CCCCFc)(PP)Cp [PP = dppe (1), dppm (2)], have been obtained from reactions between RuCl(PP)Cp and FcCCCCSiMe3 in the presence of KF (1) or HCCCCFc and K[PF6] (2), both with added dbu. The dppe complex reacts with Co2(CO)6(L2) [L2 = (CO)2, dppm] to give 3, 4 in which the Co2(CO)4(L2) group is attached to the outer CC triple bond. The PPh3 analogue of 3 (5) has also been characterised. In contrast, tetracyanoethene reacts to give two isomeric complexes 6 and 7, in which the cyano-olefin has added to either CC triple bond. The reaction of RuCl(dppe)Cp with HCCCCFc, carried out in a thf/NEt3 mixture in the presence of Na[BPh4], gave [Ru{CCC(NEt3)CHFc}(dppe)Cp]BPh4 (8), probably formed by addition of the amine to an (unobserved) intermediate butatrienylidene [Ru(CCCCHFc)(dppe)Cp]+. The reaction of I2 with 8 proceeds via an unusual migration of the alkynyl group to the Cp ring to give [RuI(dppe){η-C5H4CCC(NEt3)CHFc}]I3 (9). Single-crystal X-ray structural determinations of 1, 2 and 4-9 are reported.  相似文献   

5.
The syntheses of several diynylgold(I) phosphine complexes, including Au(CCCCH){P(tol)3} (1), Au(CCCCSiMe3)(PR3) (R = Ph 2-Ph, tol 2-tol), Au(CCCCFc)(PPh3) (3), {(tol)3P}Au(CC)nAu{P(tol)3} [n = 2 (4), 3 (6), 4 (7)], {(Ph3P)Au}CCCC{Au[P(tol)3]} (5), [ppn][Au{CCCCAu[P(tol)3]}2] (8), [Au2(μ-I)(μ-dppm)2][Au(CCCCSiMe3)2] (9), Hg{CCCCAu(PR3)}2 (R = Ph 10-Ph, tol 10-tol) and {(triphos)Cu}CCCC{Au[P(tol)3]} (11) are described. Of these, the X-ray molecular structures of 1, 2-tol, 3, 4 and 9 have been determined.  相似文献   

6.
Photolysis of a hexane solution containing ironpentacarbonyl, 1-ferrocenyl-4-phenyl-1,3-butadiyne at low temperature yields six new products: [Fe(CO)222-PhCCCC(Fc)C(CCPh)C(Fc)Fe(CO)3}-μ-CO] (1), [Fe2(CO)6{μ-η1122-PhCCCC(Fc)-C(O)-C(Fc)CCCPh}] (2), [Fe2(CO)6{μ-η1122-FcCC(CC Ph)-C(O)-C(Fc)CCCPh}] (3), [Fe2(CO)6{μ-η1122-FcCCCC(Fc)-C(O)-C(Fc)CCCPh}] (4), [Fe(CO)3{μ-η2: η2-[FcCC(CCPh)C(CCPh)C(Fc)}CO] (5) and [Fe(CO)3{μ-η2: η2-[FcCC(CCPh)C(CCPh)C(Fc)}CO] (6) formed by coupling of acetylenic moieties with CO insertion on metal carbonyl support. In presence of CO, formation of another new product 2,5-bis(ferrocenyl)-3,6-bis(tetracarbonylphenylmaleoyliron)quinone (7) was observed which on further reaction with ferrocenylacetyene gave the quinone, 2,5-bis(ferrocenyl)-3,6-bis(ethynylphenyl)quinone (8). Structures of 1-5 and 8 were established crystallographically.  相似文献   

7.
In contrast to the usual formal [2+2]-cycloaddition reaction, (NC)2CC{CC(SiPri3)}2, containing bulky alkynyl substituents, reacts with Ru(CCPh)(PPh3)2Cp to give the unprecedented cyclobutenylidene complex Ru{C(CN)2C[CC(SiPri3)]CC(SiPri3)CPhC}(PPh3)Cp, formed by addition of one of the CC(SiPri3) groups to the Ru-CCPh moiety and subsequent electronic reorganisation.  相似文献   

8.
A representative series of (organoethynyl)difluoroboranes RCCBF2 (RC4H9, (CH3)3C, CF3, C3F7, (CF3)2CF, CF3CFCF, C4F9CFCF, C6F5) was prepared by abstraction of fluoride from the corresponding K[RCCBF3] salts with BF3 in appropriate solvents (1,1,1,3,3-pentafluoropropane, 1,1,1,3,3-pentafluorobutane, or dichloromethane).  相似文献   

9.
Two kinds of phenylacetylene-terminated poly(silyleneethynylene-4,4′-phenylethereneethynylene)s, {C6H5CC[Si(R)2CCC6H4OC6H4CC]nC6H5} wherein R represents methyl or phenyl, were synthesized by condensation reaction between dichlorosilanes and 4,4′-diethynyldiphenyl ether using organomagnesium reagents. The polymers were characterized by NMR, IR, gel permeation chromatography, thermogravimetric analysis, and differential scattering calorimetry.  相似文献   

10.
The Pd(0)/Cu(I)-catalysed reactions between Co33-CBr) (CO)9 and W(CCCCH)(CO)3Cp gives the C5 complex {Cp(OC)3W}CCCCC{Co3(CO)9} (2). Similarly, Co33-CBr)(μ-dppm)(CO)7 and W(CCCCH)(CO)3Cp or Ru(CCCCH)(dppe)Cp* give {Cp(OC)3W}CCCCC{Co3(μ-dppm)(CO)7} and {Cp*(dppe)Ru}CCCCC{Co3(μ-dppmn)(CO)7} (5). An attempt to prepare a C3 analogue from Ru(CCH)(PPh3)2Cp and Co33-CBr)(CO)9 gave instead the acyl derivative {Cp(Ph3P)2Ru}CCC(O)C{Co3(CO)8(PPh3)} (7). The X-ray structures of 2, 5 and 7 are reported: the C5 chains in 2 and 5 have an essentially unperturbed -CC-CC-C formulation.  相似文献   

11.
The synthesis of the new complexes Cp*(dppe)FeCC2,5-C4H2SR (Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl; dppe = 1,2-bis(diphenylphosphino)ethane; 2a, R = CCH; 2b, R = CCSi(CH3)3; 2c, R = CCSi(CH(CH3)2)3; 3a, R = CC2,5-C4H2SCCH; 3c, R = CC2,5-C4H2SCCSi(CH(CH3)2)3) is described. The 13C NMR and FTIR spectroscopic data indicate that the π-back donation from the metal to the carbon rich ligand increases with the size of the organic π-electron systems. The new complexes were also analyzed by CV and the chemical oxidation of 2a and 3c was carried out using 1 equiv of [Cp2Fe][PF6]. The corresponding complexes 2a[PF6] and 3c[PF6] are thermally stable, but 2a[PF6] was too reactive to be isolated as a pure compound. The spectroscopic data revealed that the coordination of large organic π-electron systems to the iron nucleus produces only a weak increase of the carbon character of the SOMO for these new organoiron(III) derivatives.  相似文献   

12.
The push,pull effect in two series of disubstituted alkynes was studied at the DFT level [B3LYP/6-311G(d)] by application of the 13C chemical shift differences (GIAO) between the alkyne carbon atoms (ΔδCC), the charge difference between these carbons (ΔqCC), the occupation quotient (NBO) of anti-bonding π, and bonding π orbitals (πCCCC) and the bond length (dCC) of the CC triple bond. The linear dependence of dCC versus πCCCC quantifies changes in the push,pull effect while deviations from the latter correlation indicate and ascertain quantitatively to what extent steric hindrance restricts the strain-less conjugation of the CC triple bond π-orbitals in the disubstituted alkynes.  相似文献   

13.
The iridium dinitrogen complex [IrCl(N2)(PPh3)2] (1) was found to react with alkynylsilanes to form the vinylidene iridium(I) complexes trans- (R/R′ = Ph/Me, 2; Me/Me, 3; Bn/Me, 4; SiMe3/Me, 5; SiEt3/Et, 6; iPr/Me, 7) and with Me3SiCCC(O)R to yield the iridium η2-alkyne complexes trans-[IrCl{η2-Me3SiCCC(O)R}(PPh3)2] (R = OEt, 9; Me, 11). Complex 9 was found to isomerize upon heating or upon UV irradiation yielding the vinylidene complex trans-[IrCl{CC(SiMe3)CO2Et}(PPh3)2] (10). The reaction of 1 with Me3SiCCCCSiMe3 yielded the complex trans-[IrCl{CC(SiMe3)CCSiMe3}(PPh3)2] (8), whereas with MeO2CCCCO2Me the iridacyclopentadiene complex [Ir{C4(CO2Me)4}Cl(PPh3)2] (13) was formed. The complexes were characterized by means of 1H, 13C and 31P NMR spectroscopy as well as by IR spectroscopy and microanalysis.  相似文献   

14.
The synthesis of Fc(CC)3Ru(dppe)Cp (2) from Fc(CC)3SiMe3 and RuCl(dppe)Cp is described, together with its reactions with tcne to give the tetracyano-dienyl FcCCCC{C[C(CN)2]}2Ru(dppe)Cp (3) and -cyclobutenyl FcCCCC{CCC(CN)2C(CN)2}Ru(dppe)Cp (4), with Co2(μ-dppm)n(CO)8−2n (n = 0, 1) to give FcC2{Co2(CO)6}C2{Co2(CO)6}CCRu(dppe)Cp (5) and FcCCCCC2{Co2(μ-dppm)(CO)4}Ru(dppe)Cp (6), respectively, and with Os3(CO)10(NCMe)2 to give Os33-C2CCCC[Ru(dppe)Cp]}(CO)10 (7). On standing in solution, the latter isomerises to the cyclo-metallated derivative Os3(μ-H){μ3-C[Ru(dppe)Cp]CCC[(η-C5H3)FeCp]}(CO)8 (8). X-ray structural determinations of 1, 2, 6 and 7 are reported.  相似文献   

15.
Reactions of {(Ph3P)AuCC}2CC{CCAu(PPh3)}2 (1b), with Co3(μ-CBr)(μ-dppm)n(CO)9−2n (n = 0, 1) result in complete or partial elimination of AuBr(PPh3) to give the complexes {(OC)9Co33-CCC}2CC{CC-μ3-CCo3(CO)9}2 (3), trans-{(OC)7(μ-dppm)Co33-CCC}(HCC)CC{CCAu(PPh3)}{CC-μ3-CCo3(μ-dppm)(CO)7} (4), {(OC)7(μ-dppm)Co33-CCC}2CC(CCH){CC-μ3-CCo3(μ-dppm)(CO)7} (5) and {(OC)7(μ-dppm)Co33-CCC}2CC{CCAu(PPh3)}{CC-μ3-CCo3(μ-dppm)(CO)7} (6), which have been identified by spectroscopic methods and in the cases of 3, 4 and 5, by single-crystal X-ray diffraction methods.  相似文献   

16.
Addition of [I(py)2]BF4 to Ru(CCH)(dppe)Cp∗ gave the iodovinylidene [Ru(CCHI)(dppe)Cp∗]BF41, which could be deprotonated to Ru(CCI)(dppe)Cp∗ 2. The attempted preparation of Ru(CCCCI)(dppe)Cp∗, followed by derivatisation with tcne, gave the dienynyl Ru{CCC[C(CN)2]CIC(CN)2}(dppe)Cp∗ 3. The Pd(0)/Cu(I)-catalysed reaction of 3 with Ru{CCCCAu(PPh3)}(dppe)Cp∗ afforded Ru{CCCC(CN)2CC(CN)2Au(PPh3)}(dppe)Cp∗ 4 by formal replacement of I+ by [Au(PPh3)]+. XRD structures of 1-4 are reported.  相似文献   

17.
Several complexes have been obtained from reactions carried out in early attempts to prepare the diynyl complexes Ru(CCCCR)(dppe)Cp* (R = H, SiMe3). These have been identified crystallographically as the acyl complex Ru{CCC(O)Me}(dppe)Cp* (3), the cationic imido complex [Ru{CCC(NH2)Me}(dppe)Cp*]PF6 (4), the binuclear butenynylallenylidene [{Ru(dppe)Cp*}2{μ-CCC(OMe)CHCMeCC}]PF6 (5), and the bis(ethynyl)cyclobutenylidene [{Ru(dppe)Cp*}2{μ-CCC4H2(SiMe3)CC}]PF6 (6). NMR studies of 5 have revealed the existence of two isomers. Plausible routes for their formation from the putative butatrienylidene intermediate [Ru(CCCCH2)(dppe)Cp*]+ (A) are discussed.  相似文献   

18.
Gold(I) alkynyl complexes are shown to efficiently couple with aryl iodides under mild conditions in the presence of both Pd(II) and Cu(I) co-catalysts. The reaction is not gold catalysed, but rather the Au(I) centre serves to transfer the alkynyl moiety to Cu(I), which then enters the conventional Sonogashira cycles. Using this method, a small range of 1,4-disubstituted diynes, including examples of differentially substituted compounds ArCCCCAr′, have been prepared directly from [(Ph3P)AuCCCCAu(PPh3)] and aryl iodides ArI.  相似文献   

19.
Whereas {Ru(dppm)Cp*}2(μ-CCCC) (2) is the only product formed by deprotonation of [{Ru(dppm)Cp*}2{μ(CCHCHC)}]+ with dbu, a mixture of 2 with Ru{CCCHCH(PPh2)2[RuCp*]}(dppm)Cp* (3) and {Cp*Ru(PPh2CHCCH-)}2 (4) is obtained with KOBut. A similar reaction with [{Ru(dppm)Cp*}2{μ(CCMeCMeC)}]+ (5) gave Ru{CCCMeCH(PPh2)2[RuCp*]}(dppm)Cp* (6). X-ray structures of 4, 5 and 6 confirm the presence of the 1-ruthena-2,4-diphosphabicyclo[1.1.1]pentane moiety, which is likely formed by an intramolecular attack of the deprotonated dppm ligand on C(1) of the vinylidene ligand. Protonation of {Ru(dppe)Cp*}2(μ-CCCC) (8-Ru) regenerates its precursor [{Ru(dppe)Cp*}2{μ(CCHCHC)}]2+ (7-Ru). Ready oxidation of the bis(vinylidene) complex affords the cationic carbonyl [Ru(CO)(dppe)Cp*]PF6 (9) (X-ray structure).  相似文献   

20.
Heterobimetallic {cis-[Pt](μ-σ,π-CCPh)2}[Cu(NCMe)]BF4 (3a: [Pt] = (bipy)Pt, bipy = 2,2′-bipyridine; 3b: [Pt] = (bipy′)Pt, bipy′ = 4,4′-dimethyl-2,2′-bipyridine) is accessible by the reaction of cis-[Pt](CCPh)2 (1a: [Pt] = (bipy)Pt, 1b: [Pt] = (bipy′)Pt]) with [Cu(NCMe)4]BF4 (2). Substitution of NCMe by PPh3 (4) can be realized by the reaction of 3a with 4, whereby [{cis-[Pt](μ-σ,π-CCPh)2}Cu(PPh3)]BF4 (5) is formed. On prolonged stirring of 3 and 5, respectively, NCMe and PPh3 are eliminated and tetrametallic {[{cis-[Pt](η2-CCPh)2}Cu]2}(BF4)2 (6) is produced. Addition of an excess of NCMe to 6 gives heterobimetallic 3a.When instead of NCMe or PPh3 chelating molecules such as bipy (7) are reacted with 3a then the heterobimetallic π-tweezer molecule [{cis-[Pt](μ-σ,π-CCPh)2}Cu(bipy)]BF4 (8) is formed. Treatment of 8 with another equivalent of 7 produced [Cu(bipy2)]BF4 (9) along with [Pt](CCPh)2. However, when 3b is reacted with 1b in a 1:1 molar ratio then 10 and 11 of general composition [{[Pt](CCPh)2}2Cu]BF4 are formed. These species are isomers and only differ in the binding of the PhCC units to copper(I). A possible mechanism for the formation of 10 and 11 is presented.The solid state structures of 6, 10 and 11 are reported. In 11 the [{cis-[Pt](μ-σ,π-CCPh)2}2Cu]+ building block is set-up by two nearly orthogonal positioned bis(alkynyl) platinum units which are connected by a Cu(I) ion, whereby the four carbon-carbon triple bonds are unsymmetrical coordinated to Cu(I). In trimetallic 10 two cis-[Pt](CCPh)2 units are bridged by a copper(I) center, however, only one of the two PhCC ligands of individual cis-[Pt](CCPh)2 fragments is η2-coordinated to Cu(I) giving rise to the formation of a [(η2-CCPh)2Cu]+ moiety with a linear alkyne-copper-alkyne arrangement (alkyne = midpoint of the CC triple bond). In 6 two almost parallel oriented [Pt](CCPh)2 planes are linked by two copper(I) ions, whereby two individual PhCC units, one associated with each Pt building block, are symmetrically π-coordinated to Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号