首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The pendant nitrogen atom of the Ph2PPy ligand in the Pd(II)-allyl complexes [PdCl(η3-2-CH3-C3H4)(Ph2PPy)] (1) and [Pd(η3-2-CH3-C3H4)(Ph2PPy)2]BF4 (3) has been protonated with methanesulfonic acid to afford the corresponding pyridinium salts [PdCl(η3-2-CH3-C3H4)(Ph2PPyH)](CH3SO3) (1a) and [Pd(η3-2-CH3-C3H4)(Ph2PPyH)2](CH3SO3)2(BF4) (3a).Protonation strongly influences the 1H and 13C NMR spectral parameters of the allyl moieties of 1a and 3a whose signals resonate at lower fields with respect to the parent species indicating that upon protonation Ph2PPy becomes a weaker σ-donor and a stronger Π-acceptor. The allyl moiety, which in 1 is static, becomes dynamic in 1a, the observed syn-syn and anti-anti exchange being due to deligation of the protonated phosphine from the metal centre. Treatment of complex 3 with diethylamine in the presence of fumaronitrile gives the new Pd(0)-olefin complex [Pd(η2-fumaronitrile)(PPh2Py)2] (4) which has been characterized by elemental analysis and NMR spectroscopy. Low temperature protonation of 4 with methanesulfonic acid leads to the bis-protonated species [Pd(η2-fumaronitrile)(Ph2PPyH)2](CH3SO3)2 (4a) which is stable only at temperatures <0 °C.  相似文献   

2.
The reactions of [HIr4(CO)9(Ph2PCCPh)(μ-PPh2)] (1) or [Ir4(CO)832-HCCPh)(μ-PPh2)2] (2) with HCCPh gave two isomeric forms of [Ir4(CO)632-HCCPh)(μ24-C4H2Ph2)(μ-PPh2)2] (3 and 4) in good yields as the only products. These compounds were characterized with analytical and spectroscopic data including 1H, 13C and 31P NMR (1 and 2D) spectroscopy and their molecular structures were established by X-ray diffraction studies. Compounds 3 and 4 exhibit the same distorted butterfly metal polyhedral arrangement of metal atoms with two μ-PPh2 that occupy different positions in the structures of the two isomers. Both molecules contain a HCCPh ligand bonded in a μ32-// mode to one of the wings of the butterfly and a metallacyclic ring, which resulted from head-to-tail coupling, in the case of [Ir4(CO)632-HCCPh){μ24-(H)CC(Ph)C(H)C(Ph)}(μ-PPh2)2] (3) and tail-to-tail coupling, in that of [Ir4(CO)632-HCCPh){μ24-(H)CC(Ph)C(Ph)C(H)}(μ-PPh2)2] (4), and which is linked to two metal atoms of the second wing of the butterfly.  相似文献   

3.
Treatment of the tetrameric group eight fluoride complexes [MF(μ-F)(CO)3]4 [M = Ru (1a), Os (1b)] with the alkynylphosphane, Ph2PCCPh, results in fluoride-bridge cleavage and the formation of the air-sensitive monomeric octahedral complexes [MF2(CO)2(PPh2CCPh)2] [M = Ru (2a), Os (2b)] in high yield. The molecular structure of 2b reveals a cis, cis, trans configuration for each pair of ligands, respectively. The free alkyne moieties in 2 can be readily complexed to hexacarbonyldicobalt fragments by treatment with dicobalt octacarbonyl to afford [MF2(CO)2(μ-η12-PPh2CCPh)2{Co2(CO)6}2] [M = Ru (3a), Os (3b)]. Evidence for an intramolecular non-bonded contact between a bound fluoride and a cobalt carbonyl carbon atom is seen in the molecular structure of 3a. Thermolysis of 3a at 50 °C results in fluoride dissociation to give [RuF(CO)2(μ-η12-PPh2CCPh)2{Co2(CO)6}2]+ (4), while no reaction occurred with the osmium analogue. Prolonged thermolysis at 120 °C in a sealed vessel of both 3a and 3b gave only insoluble decomposition products.  相似文献   

4.
A phosphido-bridged unsymmetrical diiron complex (η5-C5Me5)Fe2(CO)4(μ-CO)(μ-PPh2) (1) was synthesized by a new convenient method; photo-dissociation of a CO ligand from (η5-C5Me5)Fe2(CO)6(μ-PPh2) (2) that was prepared by the reaction of Li[Fe(CO)4PPh2] with (η5-C5Me5)Fe(CO)2I. The reactivity of 1 toward various alkynes was studied. The reaction of 1 with tBuCCH gave a 1:1 mixture of two isomeric complexes (η5-C5Me5)Fe2(CO)3(μ-PPh2)[μ-CHC(tBu)C(O)] (3) containing a ketoalkenyl ligand. The reactions of 1 with other terminal alkynes RCCH (R=H, CO2Me, Ph) afforded complexes incorporating one or two molecules of alkynes and a carbonyl group. The principal products were dinuclear complexes bridged by a new phosphinoketoalkenyl ligand, (η5-C5Me5)Fe2(CO)3(μ-CO)[μ-CR1CR2C(O)PPh2] (4a: R1=H, R2=H; 4b: R1=CO2Me, R2=H; 4c: R1=H, R2=Ph). In the cases of alkynes RCCH (R=H, CO2Me), dinuclear complexes having a new ligand composed of two molecules of alkynes, a carbonyl group, and a phosphido group; i.e. (η5-C5Me5)Fe2(CO)3[μ-CRCHCHCRC(O)PPh2] (5a: R=H; 5b: R=CO2Me), were also obtained. In all cases, mononuclear complexes, (η5-C5Me5)Fe(CO)[CR1CR2C(O)PPh2] (6a: R1=H, R2=H; 6b: R1=H, R2=CO2Me; 6c: R1=H, R2=Ph) were isolated in low yields. The structures of 1, 4c, 5b, and 6a were confirmed by X-ray crystallography. The detailed structures of the products and plausible reaction mechanisms are discussed.  相似文献   

5.
The reaction of Os3(CO)10(NCMe)2 (1) with an excess of acenaphthylene at room temperature provided the complex Os3(CO)10(μ-H)(μ-η2-C12H7) (2). Compound 2 contains a σ-π coordinated acenaphthyl ligand bridging an edge of the cluster. Compound 2 was converted to the complex Os3(CO)9(μ-H)232-C12H6) (3) when heated to reflux in a cyclohexane solution. Compound 3 contains a triply bridging acenaphthyne ligand. Compound 3 reacts with acenaphthylene again at 160 °C to yield four new cluster complexes: Os4(CO)12422-C12H6) (4); Os2(CO)6(μ-η4-C24H12) (5); Os3(CO)9(μ-H)(μ34-C24H13) (6); and Os2(CO)5(μ-η4-C24H12)(η2-C12H8) (7). All compounds were characterized crystallographically. Compound 4 is a butterfly cluster of four osmium atoms bridged by a single acenaphthyne ligand. Compounds 5 and 7 are dinuclear osmium clusters containing metallacycles formed by the coupling of two equivalents of acenaphthyne. Compound 6 is a triosmium cluster formed by the coupling of an acenaphthyne ligand to an acenapthyl group that is coordinated to the cluster through a combination of σ and π-bonding.  相似文献   

6.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with trans-1,2-bis(2-pyridyl)ethene (C12H10N2) at room temperature in tetrahydrofuran affords the compounds [Re2(μ:η3-C12H10N2)(CO)8] (1) and the oxidative addition product [Re2(μ-H)(μ:η3-C12H9N2)(CO)7] (2). When the reaction is carried out at temperatures of refluxing tetrahydrofuran, besides compounds 1 and 2, the oxidative addition product [Re2(μ-H)(μ:η4-C12H9N2)(CO)6] (3), the insertion product [Re2(μ:η4-C12H10N2)(CO)8] (4) and [Re2(μ:η6-C24H18N4)(CO)6] (5) are obtained. Compound 5 contains the organic ligand rtct-tetrakis(2-pyridyl)cyclobutandiyl which is derived from a [2 + 2] cycloaddition of 1,2-bis(2-pyridyl)ethene mediated by its coordination to the bimetallic framework. The molecular structures of 1, 2, 4 and 5 were confirmed by X-ray crystallographic studies.  相似文献   

7.
The complex [{Re(CO)5}2(μ,η11-C2O4)] 1 undergoes thermal decarbonylation to give [Re2(CO)6(C2O4)]n, which reacts with triphenylphosphine and trans-1,2-bis(diphenylphosphino)ethylene (dppene) to give anti-[Re2(PPh3)2(CO)6(μ,η22-C2O4)] 2 and [Re2(μ-dppene)(CO)6(μ,η22-C2O4)] 4, respectively. Complex 2 is oxidized on prolonged exposure to air (1 week) to form anti-[Re2(OPPh3)2(CO)6(μ,η22-C2O4)] 3. In the presence of excess dppene, the complex [Re2(μ-dppene)2(CO)6(μ,η11-C2O4)] 5 is also formed alongside 4. With the chelating diphosphine 1,3-bis(diphenylphosphino)propane (dppp), the complex [(η2-dppp)Re(CO)3(μ,η11-C2O4)Re(CO)32-dppp)] 6 is formed. The structures of 3 and 4 have been determined by X-ray crystallography. The dppene ligand in complex 4 adopts an unusual “syn” conformation wherein the two phosphorus lone pairs of electrons are eclipsed, thus forming an “A-frame” type of bridge.  相似文献   

8.
The dipalladium complexes, [PdCl(μ-MeN{P(OR)2}2)]2 (R = CH2CF3, 1a; Ph, 1b) react with [Mo25-C5H5)2(CO)6] in boiling benzene to afford the molybdenum-palladium heterometallic complexes, [(η5-C5H5)(CO)Mo(μ-MeN{P(OR)2}2)2PdCl] (R = CH2CF3, 3a; Ph, 3b), [(η5-C5H5)Mo(μ3-CO)2(μ-MeN{P(OR)2}2)2Pd2Cl], (R = CH2CF3, 5a; Ph, 5b), [(η5-C5H5)(Cl)Mo(μ2-CO)(μ2-Cl)(μ-MeN{P(OR)2}2)PdCl], (R = CH2CF3, 6a; Ph, 6b) and also the mononuclear complex [Mo(CO)Cl(η5-C5H5)(κ2-MeN{P(OR)2}2)], (R = Ph, 4b). These complexes have been separated by column chromatography and are characterised by elemental analysis, IR, 1H, 31P{1H} NMR data. The structures of 1a, 3a, 4b, 5b and 6a have been confirmed by single crystal X-ray diffraction. The CO ligands in 5b and 6a adopt a semi-bridging mode of bonding; the Mo-CO distances (1.95-1.97 Å) are shorter than the Pd-CO distances (2.40-2.48 Å). The Pd-Mo distances fall in the range, 2.63-2.86 Å. The reaction of [Mo25-C5H5)2(CO)6] with MeN{P(OPh)2}2 in toluene gives [Mo2(CO)45-C5H5)21-MeN{P(OPh)2}2)2] (2) in which the diphosphazane acts as a monodentate ligand.  相似文献   

9.
The reaction of [Ru3(CO)12] (1), with indene in refluxing xylene affords [{(η5-C9H7)Ru(CO)2}2] (2), in high yield. An analogous reaction of 1 with 2-phenylindene affords the expected dinuclear complex [{(η5-C9H6Ph)Ru(CO)2}2] (5), and a heptaruthenium cluster [(C9H4Ph)Ru7(μ-H)(μ-CO)2(CO)16] (6). The indenyl ligand in compound 6 exhibits a novel bonding mode in which the benzenoid ring is μ41122 bound to the cluster. Refluxing 1 with bis-indenyl methane affords the dinuclear complex [Ru2(CO)4{μ-(η5-C9H6)2CH2}] (7), which reacts with iodine via Ru-Ru bond cleavage to give [Ru2I2(CO)4{(η5-C9H6)2CH2}] (8).  相似文献   

10.
The valence saturated benzothiazolide triosmium cluster [Os3(CO)10(μ-η2-C7H4NS)(μ-H)] (1) reacts with tetramethylthiourea in refluxing toluene to give [Os3(CO)8(μ-η2-C7H4NS)(η2-SCNMe2NMeCH2)(μ-H)2] (5), which exists as a mixture of two isomers in solution, whereas the electron-deficient cluster [Os3(CO)932-C7H4NS)(μ-H)] (2) reacts with tetramethylthiourea in refluxing cyclohexane to give two new compounds [Os3(CO)8(μ-η2-C7H4NS)(η2-SCNMe2NMeCH2)(μ-H)2] (6) and [Os3(CO)9(μ-η2-C7H4NS)(η1-SC(NMe2)2)(μ-H)] (7). In contrast, the reaction of [Os3(CO)932-C7H3(2-CH3)NS)(μ-H)](3) with tetramethylthiourea in refluxing cyclohexane at 81 °C, gives only [Os3(CO)9(μ-η2-C7H3(2-CH3)NS)(η1-SC(NMe2)2)(μ-H)] (8) in 15% yield. Compound 7 converts into 6 in refluxing toluene whereas a similar thermolysis of 8 results non-specific decomposition. All the compounds have been characterized by elemental analysis, IR, 1H NMR and mass spectroscopic data together with single crystal X-ray diffraction analysis for 5 and 7. Both compounds 5 and 6 contain a cyclometallated tetramethylthiourea ligand which is chelating at the rear osmium atom and are structurally very similar. In 5, the benzothiazolide ligand is coordinated to Os3 triangle via the nitrogen lone pair and C(2) carbon atom of the heterocyclic ring whereas in 6 the ligand is coordinated to the Os3 triangle via the nitrogen lone pair and the C(7) carbon atom of carbocyclic ring. In 7 and 8, the tetramethylthiourea ligand is coordinated at an equatorial site of the osmium atom which is also bound to the nitrogen atom of the benzothiazolide ligand.  相似文献   

11.
The clusters [Ru4(μ-CO)(CO)1041212-C5H6)2] (1), [Ru4(CO)8441113-C10H12)(μ3321-C5H6)] (2) and [Ru4(CO)10441131-C15H16)] (3) have been prepared from the reaction of [H4Ru4(CO)12] with 1-penten-3-yne. This reaction is observed to proceed with dimerization and trimerization through the triple bonds. The products were characterized spectroscopically by 1H- and 13C-NMR. X-ray crystal structures of compounds 1 and 2 are also described.  相似文献   

12.
The reaction of the complex [{(η6-C6Me6)Ru(μ-Cl)Cl}2] 1 with sodium azide ligand gave two new dimers of the composition [{(η6-C6Me6)Ru(μ-N3)(N3)}2] 2 and [{(η6-C6Me6)Ru(μ-N3)Cl}2] 3, depending upon the reaction conditions. Complex 3 with excess of sodium azide in ethanol yielded complex 2. These complexes undergo substitution reactions with monodentate ligands to yield monomeric complexes of the type [(η6-C6Me6)Ru(X)(N3)(L)] {X = N3, Cl, L = PPh3 (4a, 9a); PMe2Ph (4b, 9b); AsPh3 (4c, 9c); X = N3, L = pyrazole (Hpz) (5a); 3-methylpyrazole (3-Hmpz) (5b) and 3,5-dimethyl-pyrazole (3,5-Hdmpz) (5c)}. Complexes 2 and 3 also react with bidentate ligands to give bridging complexes of the type [{(η6-C6Me6)Ru(N3)(X)]2(μ-L)} {X = N3, Cl, L = 1,2-bis(diphenylphosphino)methane (dppm) (6, 10); 1,2-bis(diphenylphosphino)ethane (dppe) (7, 11); 1,2-bis(diphenylphosphino)propane (dppp) (8, 12); X = Cl, L = 4,4-bipyridine (4,4′-bipy) (13)}. These complexes were characterized by FT-IR and FT-NMR spectroscopy as well as by analytical data.The molecular structures of the representative complexes [{(η6-C6Me6)Ru(μ-N3)(N3)}2] 2, [{(η6-C6Me6)Ru(μ-N3)Cl}2] 3,[(η6-C6Me6)Ru(N3)2(PPh3)] 4a and [{(η6-C6Me6)Ru(N3)2}2 (μ-dppm)] 6 were established by single crystal X-ray diffraction studies.  相似文献   

13.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

14.
The synthesis and properties of heterobimetallic Ti-M complexes of type {[[Ti](μ-η12-CCSiMe3)][M(μ-η12-CCSiMe3)(CO)4]} (M = Mo: 5, [Ti] = (η5-C5H5)2Ti; 6, [Ti] = (η5-C5H4SiMe3)2Ti; M = W: 7, [Ti] = (η5-C5H5)2Ti; 8, [Ti] = (η5-C5H4SiMe3)2Ti) and {[Ti](μ-η12-CCSiMe3)2}MO2 (M = Mo: 13, [Ti] = (η5-C5H5)2Ti; 14, [Ti] = (η5-C5H4SiMe3)2Ti). M = W: 15, [Ti] = (η5-C5H5)2Ti; 16, [Ti] = (η5-C5H4SiMe3)2Ti) are reported. Compounds 5-8 were accessible by treatment of [Ti](CCSiMe3)2 (1, [Ti] = (η5-C5H5)2Ti; 2, [Ti] = (η5-C5H4SiMe3)2Ti) with [M(CO)5(thf)] (3, M = Mo; 4, M = W) or [M(CO)4(nbd)] (9, M = Mo; 10, M = W; nbd = bicyclo[2.2.1]hepta-2,5-diene), while 13-16 could be obtained either by the subsequent reaction of 1 and 2 with [M(CO)3(MeCN)3] (11, M = Mo; 12, M = W) and oxygen, or directly by oxidation of 5-8 with air. A mechanism for the formation of 5-8 is postulated based on the in-situ generation of [Ti](CCSiMe3)((η2-CCSiMe3)M(CO)5), {[Ti](μ-η12-CCSiMe3)2}-M(CO)4, and [Ti](μ-η12-CCSiMe3)((μ-CCSiMe3)M(CO)4) as a result of the chelating effect exerted by the bis(alkynyl) titanocene fragment and the steric constraints imposed by the M(CO)4 entity.The molecular structure of 5 in the solid state were determined by single crystal X-ray diffraction analysis. In doubly alkynyl-bridged 5 the alkynides are bridging the metals Ti and Mo as a σ-donor to one metal and as a π-donor to the other with the [Ti](CCSiMe3)2Mo core being planar.  相似文献   

15.
Trimethylstannyl (diphenylphosphino)acetate (1), which is readily accessible from potassium (diphenylphosphino)acetate and trimethylstannyl chloride, may serve as the source of (diphenylphosphino)acetate anion in the preparation of coordination compounds. Thus, the reactions between [M(cod)Cl2] (M = Pd and Pt; cod = η22-cycloocta-1,5-diene) and two equivalents of 1 give [M(Ph2PCH2CO22O,P)2] (2 and 3), while the reaction of [{Pd(μ-Cl)Cl(PFur3)}2] (4; Fur = 2-furyl) with one equivalent of 1 yields [SP-4-3]-[PdCl(Ph2PCH2CO22O,P)(PFur3)] (5). The reactions of 1 with the dimers [{Rh(η5-C5Me5)Cl(μ-Cl)}2] and [{Ru(η6-1,4-MeC6H4(CHMe2))Cl(μ-Cl)}2] (at 1-to-metal ratio 1:1) produce O,P-chelated complexes as well, albeit as stable adducts with the liberated Me3SnCl: [RhCl(η5-C5Me5)(Ph2PCH2CO22O,P)] · Me3SnCl (6) and[RuCl(η6-1,4-MeC6H4(CHMe2))(Ph2PCH2CO22O,P)] · Me3SnCl (8). The related complexes with P-monodentate (diphenylphosphino)acetic acid, [RhCl25-C5Me5)(Ph2PCH2CO2H-κ,P)] (7) and [RuCl26-1,4-MeC6H4(CHMe2))(Ph2PCH2CO2H-κP)] (9), were obtained by bridge splitting in the dimers with the phosphinocarboxylic ligand. All new compounds were characterized by spectral methods and combustion analyses, and the structures of 2 · 3CH2Cl2, 3, 4, 5, 6 and 8 were determined by X-ray crystallography.  相似文献   

16.
[(η5-C5H5)ZrCl25-C5H4)CMe2(C5H5)] reacted with Co2(CO)8 to produce a heterodinuclear Zr(IV)-Co(I) complex [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)Co(CO)2] (3). Complex 3 underwent oxidative addition of I2 to give [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)CoI2(CO)] (4) having Zr(IV) and Co(III) centers. The carbonyl ligand of 4 was easily replaced with P(OMe)3 and PPh3 to afford [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)CoI2(L)] (5: L = P(OMe)3, 6: L = PPh3). Structures of 5 and 6 were determined by X-ray crystallography. These Zr-Co heterodinuclear complexes catalyzed polymerization of ethylene and propylene.  相似文献   

17.
The reaction between 1-pyrenecarboxaldehyde (C16H9CHO) and the labile triosmium cluster [Os3(CO)10(CH3CN)2] gives rise to the formation of two new compounds by competitive oxidative addition between the aldehydic group and an arene C-H bond, to afford the acyl complex [Os3(CO)10(μ-H)(μ-COC16H9)] (1) and the compound [Os3(CO)10(μ-H) (C16H8CHO)] (2), respectively. Thermolysis of [Os3(CO)10(μ-H)(μ-C16H9CO)] (1) in n-octane affords two new complexes in good yields, [Os3(CO)9(μ-H)2(μ-COC16H8)] (3) and the pyryne complex [Os3(CO)9(μ-H)23112-C16H8)] (4).In contrast, when 1-pyrenecarboxaldehyde reacts with [Ru3(CO)12] only one product is obtained, [Ru3(CO)9(μ-H)23112-C16H8)] (5), a nonacarbonyl cluster bearing a pyrene ligand. All compounds were characterized by analytical and spectroscopic data, and crystal structures for 1, 2, 4 and 5 were obtained.  相似文献   

18.
Reaction of Ph2PCC(CH2)5CCPh2 with Os3(CO)10(NCMe)2 affords Os3(CO)10(μ,η2-(Ph2P)2C9H10) (1) and the double cluster [Os3(CO)10]2(μ,η2- (Ph2P)2C9H10)2 (2), through coordination of the phosphine groups. Thermolysis of 1 in toluene generates Os3(CO)7(μ-PPh2)(μ35-Ph2PC9H10) (3) and Os3(CO)8(μ-PPh2)(μ36-Ph2P(C9H10)CO) (4). The molecular structures of 1, 3, and 4 have been determined by an X-ray diffraction study. Both 3 and 4 contain a bridging phosphido group and a carbocycle connected to an osmacyclopentadienyl ring, which are apparently derived from C-P bond activation and C-C bond rearrangement of the dpndy ligand governed by the triosmium clusters.  相似文献   

19.
The bridging diiron thiocarbyne complex [Fe2{μ-CS(Me)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1) reacts with activated olefins (methyl acrylate, acrylonitrile, styrene, diethyl maleate), in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13-Cα(SMe)Cβ(R′)Cγ(H)(R″)} (μ-CO)(CO)(Cp)2] (R″ = CO2Me, R′ = H, 3a; R″ = CN, R′ = H, 3b; R″ = C6H5, R′ = H, 3c; R″ = R′ = CO2Et, 3d). The coupling reaction of olefin with thiocarbyne is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs between the less substituted alkene carbon and the thiocarbyne. Moreover, olefinic hydrogens of the bridging ligands are mutually trans.The reactions of 3a-b with MeSO3CF3 result, selectively, in the formation of the cationic μ-sulphonium allylidene complexes [Fe2{μ-η13-Cα(SMe2)Cβ (H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CO2Me, 4a; R = CN, 4b). Compound 4a undergoes displacement of the SMe2 group by nucleophiles such as NaBH4, NBu4CN and NaOMe, affording the complexes [Fe2{μ-η13-Cα(R)Cβ (H)Cγ(H)(CO2Me)}(μ-CO)(CO)(Cp)2] (R = H, 5a; R = CN, 5b; R = OMe, 5c), respectively. The molecular structures of 3a and 5a have been determined by X-ray diffraction studies.  相似文献   

20.
A novel half-sandwich Zr(IV) complex [η51-N-C5(CH3)4CH2CH2N(CH3)2]ZrCl3 (6) together with zirconocene dichlorides [η5-C5(CH3)4CH2CH2N(CH3)2][η5-C5(CH3)5]ZrCl2 (4) and [η5-C5(CH3)4CH2CH2N(CH3)2]2ZrCl2 (5) have been prepared. Complex 6 has been isolated and characterized in three different forms, namely, as an adduct with THF 6a, an adduct with tetrahydrothiophene 6b, and a solvent-free form 6c. Molecular structures of complexes 4, 6b, and 6c have been established by X-ray diffraction analysis. Complex 6c has been shown to be a monomeric solvent-free half sandwich Zr(IV) complex. The dynamic behavior of complex 6a in a non-solvating medium (an equilibrium between 6a and 6c along with a degenerate interconversion of the Zr-Ccp-CH2-CH2-N(CH3)2-(Zr) pseudo-five-member metallacycle) have been studied by the variable-temperature 1H and 13C{1H} NMR spectroscopy. The activation parameters for the degenerate five-member cycle interconversion have been elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号