首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study evaluates the relation between loudness and simple reaction time (RT). Loudness matches between a narrowband noise (125 Hz wide) and a broadband noise (1500 Hz) were made at levels from near threshold to near 100 dB SPL. Over a similarly wide range of levels, RT to each of the noise bands was also measured. As reported often in previous loudness-matching studies, loudness summation depended strongly on level. With increasing SPL, the level difference between the noises needed to keep them equally loud first increased, to around 10 dB at moderate levels, and then decreased. Except for one listener, the RT data show the same pattern. The level difference needed to keep RT to the two noises the same first increased and then decreased. These results show that RT is closely related to loudness, but not to sensation level. If RT depended on sensation level, the level difference between the two noises needed to achieve equal RT would not change with SPL because the difference in sensation level between two sounds is a constant. Overall, the average results provide strong support for the contention that simple RT and loudness are closely related.  相似文献   

2.
Effects of sound level on auditory cortical activation are seen in neuroimaging data. However, factors such as the cortical response to the intense ambient scanner noise and to the bandwidth of the acoustic stimuli will both confound precise quantification and interpretation of such sound-level effects. The present study used temporally "sparse" imaging to reduce effects of scanner noise. To achieve control for stimulus bandwidth, three schemes were compared for sound-level matching across bandwidth: component level, root-mean-square power and loudness. The calculation of the loudness match was based on the model reported by Moore and Glasberg [Acta Acust. 82, 335-345 (1996)]. Ten normally hearing volunteers were scanned using functional magnetic resonance imaging (tMRI) while listening to a 300-Hz tone presented at six different sound levels between 66 and 91 dB SPL and a harmonic-complex tone (F0= 186 Hz) presented at 65 and 85 dB SPL. This range of sound levels encompassed all three bases of sound-level matching. Activation in the superior temporal gyrus, induced by each of the eight tone conditions relative to a quiet baseline condition, was quantified as to extent and magnitude. Sound level had a small, but significant, effect on the extent of activation for the pure tone, but not for the harmonic-complex tone, while it had a significant effect on the response magnitude for both types of stimulus. Response magnitude increased linearly as a function of sound level for the full range of levels for the pure tone. The harmonic-complex tone produced greater activation than the pure tone, irrespective of the matching scheme for sound level, indicating that bandwidth had a greater effect on the pattern of auditory activation than sound level. Nevertheless, when the data were collapsed across stimulus class, extent and magnitude were significantly correlated with the loudness scale (measured in phons), but not with the intensity scale (measured in SPL). We therefore recommend the loudness formula as the most appropriate basis of matching sound level to control for loudness effects when cortical responses to other stimulus attributes, such as stimulus class, are the principal concern.  相似文献   

3.
The intensity jnd is often assumed to depend on the slope of the loudness function. One way to test this assumption is to measure the jnd for a sound that falls on distinctly different loudness functions. Two such functions were generated by presenting a 1000-Hz tone in narrow-band noise (925-1080 Hz) set at 70 dB SPL and in wideband noise (75-9600 Hz) set at 80 dB SPL. Over a range from near threshold to about 75 dB SPL, the loudness function for the tone is much steeper in the narrow-band noise than in the wideband noise. At 72 dB SPL, where the two loudness curves cross, the tone's jnd was measured in each noise by a block up-down two-interval forced-choice procedure. Despite the differences in slope (and in sensation level), the jnd (delta I/I) is nearly the same in the two noises, 0.22 in narrow-band noise and 0.20 in wideband noise. The mean value of 0.21 is close to the value of 0.25 interpolated from Jesteadt et al. [J. Acoust. Soc. Am. 61, 169-176 (1977)] for a 1000-Hz tone that had the same loudness in quiet as did our 72-dB tone in noise, but lay on a loudness function with a much lower slope. These and other data demonstrate that intensity discrimination for pure tones is unrelated to the slope of the loudness function.  相似文献   

4.
A survey of data on the perception of binaurally presented sounds indicates that loudness summation across ears is less than perfect; a diotic sound is less than twice as loud as the same sound presented monaurally. The loudness model proposed by Moore et al. [J. Audio Eng. Soc. 45, 224-240 (1997)] determines the loudness of binaural stimuli by a simple summation of loudness across ears. It is described here how the model can be modified so as to give more accurate predictions of the loudness of binaurally presented sounds, including cases where the sounds at the two ears differ in level, frequency or both. The modification is based on the idea that there are inhibitory interactions between the internal representations of the signals at the two ears, such that a signal at the left ear inhibits (reduces) the loudness evoked by a signal at the right ear, and vice versa. The inhibition is assumed to spread across frequency channels. The modified model gives reasonably accurate predictions of a variety of data on the loudness of binaural stimuli, including data obtained using loudness scaling and loudness matching procedures.  相似文献   

5.
Phonation threshold pressure has been defined as the minimum subglottalpressure to generate phonation. Previous research has indicated that children may habitually employ higher subglottal pressures than adults. In the present investigation sound pressure level (SPL) and subglottal pressures at different pitch levels were measured at and above phonation threshold in nine children. Phonation threshold values were scattered in reasonable agreement with Titzes' prediction, although a discrepancy was noted regarding the frequency dependence in some voices. At normal conversational loudness and loudest level of phonation the children's PS values were between two to four and four to eight times the predicted threshold values, respectively. At normal conversational loudness and habitual pitch subglottal pressures were lower than those previously observed for children, but similar to those found for female adults. The SPL in softest and loudest phonation were somewhat lower as compared to previous phonetogram data for children and for female adults. At normal loudness and habitual pitch the SPL values were similar to those of female adults. For a doubling of Ps mean SPL increased by 10.5 dB on the average.  相似文献   

6.
Loudness was measured as a function of signal bandwidth for 10-, 100-, and 1000-ms-long signals. The test and reference signals were bandpass-filtered noise spectrally centered at 2 kHz. The bandwidth of the test signal was varied from 200 to 6400 Hz. The reference signal had a bandwidth of 3200 Hz. The reference levels were 45, 55, and 65 dB SPL. The level to produce equal loudness was measured with an adaptive, two-interval, two-alternative forced-choice procedure. A loudness matching procedure was used, where the tracks for all signal pairs to be compared were interleaved. Mean results for nine normal-hearing subjects showed that the magnitude of spectral loudness summation depends on signal duration. For all reference levels, a 6- to 8-dB larger level difference between equally loud signals with the smallest (delta f = 200 Hz) and largest (delta f = 6400 Hz) bandwidth is found for 10-ms-long signals than for the 1000-ms-long signals. The duration effect slightly decreases with increasing reference loudness. As a consequence, loudness models should include a duration-dependent compression stage. Alternatively, if a fixed loudness ratio between signals of different duration is assumed, this loudness ratio should depend on the signal spectrum.  相似文献   

7.
It is well known that a tone presented binaurally is louder than the same tone presented monaurally. It is less clear how this loudness ratio changes as a function of level. The present experiment was designed to directly test the Binaural Equal-Loudness-Ratio hypothesis (BELRH), which states that the loudness ratio between equal-SPL monaural and binaural tones is independent of SPL. If true, the BELRH implies that monaural and binaural loudness functions are parallel when plotted on a log scale. Cross-modality matches between string length and loudness were used to directly measure binaural and monaural loudness functions for nine normal listeners. Stimuli were 1-kHz 200-ms tones ranging in level from 5 dB SL to 100 dB SPL. A two-way ANOVA showed significant effects of level and mode (binaural or monaural) on loudness, but no interaction between the level and mode. Consequently, no significant variations were found in the binaural-to-monaural loudness ratio across the range of levels tested. This finding supports the BELRH. In addition, the present data were found to closely match loudness functions derived from binaural level differences for equal loudness using the model proposed by Whilby et al. [J. Acoust. Soc. Am. 119, 3931-3939 (2006)].  相似文献   

8.
Recent research on loudness has focused on contextual effects on loudness, both assimilation and recalibration. The current experiments examined loudness recalibration [Marks, J. Exp. Psychol. 20, 382-396 (1994)]. In the first experiment, an adaptive tracking procedure was used to measure loudness recalibration as a function of standard- and recalibration-tone level. The standard-tone frequencies were 500 and 2500 Hz and the levels were 80-, 70-, 60-, and 40-dB SPL, and threshold. Seventeen dB of loudness recalibration was obtained (combined over both frequencies) in the 60-dB SPL condition. This amount of loudness recalibration, while substantial, is still less than that obtained by Marks (22 dB), using the method of paired comparisons. The second experiment sought to duplicate Marks' earlier experiment [Marks, J. Exp. Psychol. 20, 382-396 (1994), experiment 2]. The results of this experiment (21 dB) were almost identical to those obtained by Marks. The results of experiment 1 indicate that loudness recalibration is maximum when the recalibration tone is moderately louder than the subsequent standard tones. Relatively little loudness recalibration is exhibited when the standard-tone level equals the recalibration-tone level. In addition, there is no loudness recalibration at threshold. The tracking procedure also identified that the onset of loudness recalibration is very rapid. The difference between the maximum loudness recalibration obtained at each frequency (11 dB at 500 Hz, 6 dB at 2500 Hz) suggests that loudness recalibration is dependent upon the frequency of the standard tone.  相似文献   

9.
The influence of the degree of envelope modulation and periodicity on the loudness and effectiveness of sounds as forward maskers was investigated. In the first experiment, listeners matched the loudness of complex tones and noise. The tones had a fundamental frequency (F0) of 62.5 or 250 Hz and were filtered into a frequency range from the 10th harmonic to 5000 Hz. The Gaussian noise was filtered in the same way. The components of the complex tones were added either in cosine phase (CPH), giving a large crest factor, or in random phase (RPH), giving a smaller crest factor. For each F0, subjects matched the loudness between all possible stimulus pairs. Six different levels of the fixed stimulus were used, ranging from about 30 dB SPL to about 80 dB SPL in 10-dB steps. Results showed that, at a given overall level, the CPH and the RPH tones were louder than the noise, and that the CPH tone was louder than the RPH tone. The difference in loudness was larger at medium than at low levels and was only slightly reduced by the addition of a noise intended to mask combination tones. The differences in loudness were slightly smaller for the higher than for the lower F0. In the second experiment, the stimuli with the lower F0s were used as forward maskers of a 20-ms sinusoid, presented at various frequencies within the spectral range of the maskers. Results showed that the CPH tone was the least effective forward masker, even though it was the loudest. The differences in effectiveness as forward maskers depended on masker level and signal frequency; in order to produce equal masking, the level of the CPH tone had to be up to 35 dB above that of the RPH tone and the noise. The implications of these results for models of loudness are discussed and a model is presented based on neural activity patterns in the auditory nerve; this predicts the general pattern of loudness matches. It is suggested that the effects observed in the experiments may have been influenced by two factors: cochlear compression and suppression.  相似文献   

10.
The influence of middle-ear muscle (MEM) contraction on auditory threshold has been measured for pure tones of 0.25, 0.5, and 1.5 kHz. The reflex-activating signal was a 3-kHz pure tone. Signal paradigms were chosen to reduce or eliminate the effects of binaural loudness summation, contralateral direct masking, and contralateral remote and backward masking effects, and to maximize the influence of MEM contraction. Results indicate that under no condition was behavioral threshold affected by the MEM contraction induced using a pure-tone stimulus of 3 kHz, 105 dB SPL.  相似文献   

11.
Male bullfrogs will vocalize in response to playbacks of the mating (advertisement) calls of conspecifics. This behavior was studied in response to playbacks of bullfrog mating calls presented at six different sound intensity levels. The lowest sound intensity level tested (50 dB SPL) was insufficient to evoke calling from any of the animals. Calling was evoked by playback levels of 60 dB SPL and higher. The data suggest that behavioral evoked calling thresholds lie between 50-60 dB SPL for these animals. Playback intensity levels of 80 dB SPL were more effective in evoking responses than were intensity levels up to 20 dB higher or lower. This was true both in terms of the total number of evoked responses and the trial number at which responding ceased. Moreover, significantly less habituation of evoked calling occurred at levels of 80 dB SPL than at higher or lower levels. The data suggest that a sound pressure level of 80 dB represents a behaviorally preferred intensity level for evoked calling in the bullfrog. Field recordings of bullfrog choruses show that the intensity produced by an individual calling male reaches a level of 80 dB SPL at a distance of 1 m. This intensity level is identical to that producing maximal evoked calling in the laboratory.  相似文献   

12.
Loudness of interaurally correlated narrow- and broadband noises was investigated using a loudness estimation paradigm (with two anchors) presented via headphones. Throughout the experiments (most performed by 12 subjects), the results from both anchors agreed very well. In the first experiment, third-octave-band noises centered around 250, 710, or 2000 Hz, as well as broadband red (-10 dB/oct), pink (-3 dB/oct), and blue (+10 dB/oct) noises, with interaural level differences of delta L = 0, 4, 10, 20, and infinity dB, were presented as test signals while the same sound presented monaurally or diotically served as anchor. The binaurally summed loudness at delta L = 0 dB was found to be larger than the loudness of a monaural signal of the same SPL by a factor of about 1.5 and decreased with increasing delta L. No dependence of this behavior on frequency, level, or spectral shape was found. In a second experiment, abutting frequency bands of varying width were alternately presented to the subject's left and right ears with the overall spectrum encompassing the whole audio range. The binaural loudness was larger for fewer but broader frequency bands. In a third experiment, uniform exciting noise was switched between the two ears at various speeds. Increasing the switching frequency gave rise to an increase in loudness of about 20%. All results are discussed from the viewpoint of the use of the standardized loudness meter. At this point, there is no evidence that any significant systematic errors due to single-channel evaluation (in contrast to the human two-channel processing) are made by measuring loudness using these meters.  相似文献   

13.
A tone usually declines in loudness when preceded by a more intense inducer tone. This phenomenon is called "loudness recalibration" or "induced loudness reduction" (ILR). The present study investigates how ILR depends on level, loudness, and duration. A 2AFC procedure was used to obtain loudness matches between 2500-Hz comparison tones and 500-Hz test tones at 60 and 70 dB SPL, presented with and without preceding 500-Hz inducer tones. For 200-ms test and comparison tones, the amount of ILR did not depend on inducer level (set at 80 dB SPL and above), but ILR was greater with 200- than with 5-ms inducers, even when both were equally loud. For 5-ms tones, ILR was as great with 5- as with 200-ms inducers and about as great as when test and inducer tones both lasted 200 ms. These results suggest that (1) neither the loudness nor the SPL of the inducer alone governs ILR, and (2) inducer duration must equal or exceed test-tone duration to yield maximal amounts of ILR. Further analysis indicates that the efferent system may be partly responsible for ILR of 200-ms test tones, but is unlikely to account for ILR of 5-ms tones.  相似文献   

14.
Why can a decrease in dB(A) produce an increase in loudness?   总被引:2,自引:0,他引:2  
Loudness measured by the method of absolute magnitude estimation is compared to loudness calculated in accordance with ISO 532 B (International Organization for Standardization, Geneva, 1966). The measured and calculated loudness functions exhibit a similar pattern of loudness growth. Both measured and calculated loudness of a complex sound composed of a 1000-Hz tone and broadband noise is a nonmonotonic function of the overall SPL of the complex. The nonmonotonic loudness-growth pattern holds over a 30-dB range from 73.5 to 103.5. To facilitate understanding of the results, a single cycle of data is analyzed in detail. The analysis shows that loudness patterns produced in the auditory system by the tone-noise complex can account for the observed effects. Moreover, they show that the A-weighting and the loudness of the complex are negatively related. This inverse relation means that the A-weighted SPL is an inappropriate and misleading indicator of the loudness of sound combinations with heterogeneous spectral envelopes. Consequently, its suitability for noise control is diminished. A loudness meter that combines the spectral shapes of different sounds to produce an overall perceived magnitude offers greater promise.  相似文献   

15.
为研究烟火药水下燃烧声辐射机理,采用烟火药和压缩氮气喷射声源对比的方法,利用水声测试系统,通过实验研究不同体积流量下两种声源装置的声辐射规律。结果表明,烟火药水下燃烧声源与压缩氮气声源的声辐射特征相似,辐射频率主要集中在0~1000 Hz内,峰值频率均位于100 Hz附近,总声压级、峰值声压级均随着气体流量增加而增强。当气体流量从60 ml/s增加到84 ml/s时,烟火药峰值声压级由155 d B增加到163 d B,0~1000 Hz内总声压级由159 d B增加到165 d B;当喷气流量从70 ml/s增加到141 ml/s时,压缩氮气源峰值声压级由136 d B增加到139 d B,0~1000 Hz内总声压级由144 d B增加到147 d B。当气体流量相近时,烟火药相比压缩氮气声压级相差显著,其声压级均高于同频率下压缩氮气源,两者的峰值声压级分别为157 d B、139 d B,0~1000 Hz内总声压级分别为160 d B、147 d B。  相似文献   

16.
This article describes experiments carried out in order to gain a deeper understanding of the mechanisms underlying variation of vocal loudness in singers. Ten singers, two of whom are famous professional opera tenor soloists, phonated at different pitches and different loudnesses. Their voice source characteristics were analyzed by inverse filtering the oral airflow signal. It was found that the main physiological variable underlying loudness variation is subglottal pressure (Ps). The voice source property determining most of the loudness variation is the amplitude of the negative peak of the differentiated flow signal, as predicted by previous research. Increases in this amplitude are achieved by (a) increasing the pulse amplitude of the flow waveform; (b) moving the moment of vocal fold contact earlier in time, closer to the center of the pulse; and (c) skewing the pulses. The last mentioned alternative seems dependent on both Ps and the ratio between the fundamental frequency and the first formant. On the average, the singers doubled Ps when they increased fundamental frequency by one octave, and a doubling of the excess Ps over threshold caused the sound pressure level (SPL) to increase by 8–9 dB for neutral phonation, less if mode of phonation was changed to pressed. A shift of mode of phonation from flow over neutral to pressed was associated with a reduction of the peak glottal permittance i.e., the ratio between peak transglottal airflow to Ps. Flow phonation had the most favorable relationship between Ps and SPL.  相似文献   

17.
Two experiments were conducted to reexamine the relation between loudness and the bandwidth of complex stimuli. In experiment 1, experimental stimuli consisting of a 2000-Hz pure tone and ten computer-generated multitonal complexes ranging in bandwidth from 0.26-3.16 oct, logarithmically centered at 2000 Hz, were matched in loudness to a 2000-Hz comparison pure tone presented at 90, 70, and 30 dB SPL. The SPL of the experimental stimuli required for equal loudness was linearly related to bandwidth (in octaves) for each of the three comparison stimulus levels. In experiment 2, the loudness behavior of narrow-bandwidth stimuli within the previously reported critical band region was examined. The results indicated a linear relation similar to that obtained in experiment 1. These results are consistent with an auditory filter concept in which frequency is continuously encoded along the basilar membrane and in which loudness of complex stimuli is linearly related to area of excitation.  相似文献   

18.
Preliminary data [M. Epstein and M. Florentine, Ear. Hear. 30, 234-237 (2009)] obtained using speech stimuli from a visually present talker heard via loudspeakers in a sound-attenuating chamber indicate little difference in loudness when listening with one or two ears (i.e., significantly reduced binaural loudness summation, BLS), which is known as "binaural loudness constancy." These data challenge current understanding drawn from laboratory measurements that indicate a tone presented binaurally is louder than the same tone presented monaurally. Twelve normal listeners were presented recorded spondees, monaurally and binaurally across a wide range of levels via earphones and a loudspeaker with and without visual cues. Statistical analyses of binaural-to-monaural ratios of magnitude estimates indicate that the amount of BLS is significantly less for speech presented via a loudspeaker with visual cues than for stimuli with any other combination of test parameters (i.e., speech presented via earphones or a loudspeaker without visual cues, and speech presented via earphones with visual cues). These results indicate that the loudness of a visually present talker in daily environments is little affected by switching between binaural and monaural listening. This supports the phenomenon of binaural loudness constancy and underscores the importance of ecological validity in loudness research.  相似文献   

19.
The observer was asked to judge whether a comparison sound was more or less intense than a standard sound of 60 dB SPL. The sounds were broadband noises of 100-ms duration. The independent variables were the range of intensities used in the set of comparison sounds and the presence or absence of feedback. The main dependent variable was the variability of such judgments, which was measured from the psychometric function. The variability, measured in terms of the Weber function, increased from about 1.5 to 4 dB when the stimulus range changed from 10 to 60 dB. Increases in stimulus range increased the variability of the binary judgments in this task, as they had in previous experiments where multiple responses were required. Feedback improved performance primarily at the largest ranges. Only a small fraction of these changes in variability stems from sequential effects.  相似文献   

20.
A phonetogram is a graph showing the sound pressure level (SPL) of softest and loudest phonation over the entire fundamental frequency range of a voice. A physiological interpretation of a phonetogram is facilitated if the SPL is measured with a flat frequency curve and if the vowel /a/ is used. It was found that in soft phonation, the SPL is mainly dependent on the amplitude of the fundamental, while in loud phonation, the SPL is mainly determined by overtones. The short-term SPL variation, i.e., the level variation within a tone, was about 5 dB in soft phonation and close to 2 dB in loud phonation. For two normal voices the long-term SPL variation, calculated as the mean standard deviation of SPL for day-to-day variation, was found to be between 2.4 and 3.4 dB in soft and loud phonation. Speakers who raise their loudness of phonation also tend to raise their mean voice fundamental frequency. Measures obtained from speaking at various voice levels were combined so that typical pathways could be introduced into the phonetogram. The average slope of these pathways was 0.3–0.5 st/dB for healthy subjects. Averaged phonetograms for male singers and male nonsingers did not differ significantly, but averaged phonetograms for female singers and female nonsingers did, in that the upper contour was higher for the female singers. Averaged phonetograms for female patients with non-organic dysphonia showed significantly lower SPL values in loudest phonation as compared to healthy female subjects, while no corresponding difference was seen for males in this regard. With respect to the SPL values for softest phonation, male dysphonic patients showed significantly higher SPL values than healthy male subjects, while no corresponding difference was seen in female subjects. The subglottal pressure mirrored these phonetogram differences between healthy and pathological voices. The averaged phonetograms of female patients after voice therapy showed an increased similarity with those of normal voices. For the male patients the averaged phonetogram did not change significantly after therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号