首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The template-directed syntheses, employing bisparaphenylene-[34]crown-10 (BPP34C10), 1,5-dinaphthoparaphenylene-[36]crown-10 (1/5NPPP36C10), and 1,5-dinaphtho-[38]crown-10 (1/5DNP38C10) as templates, of three [2]catenanes, whereby one of the two bipyridinium units in cyclobis(paraquat-p-phenylene) is replaced by a bipicolinium unit, are described. The crude reaction mixtures comprising the [2]catenanes all contain slightly more of the homologous [3]catenanes, wherein a "dimeric" octacationic cyclophane has the crown ether macrocycles encircling the alternating bipyridinium units with the bipicolinium units completely unfettered. X-ray crystallography, performed on all three [2]catenanes and two of the three [3]catenanes reveals co-conformational and stereochemical preferences that are stark and pronounced. Both the [3]catenanes crystallize as mixtures of diastereoisomers on account of the axial chirality associated with the picolinium units in the solid state. Dynamic (1)H NMR spectroscopy is employed to probe in solution the relative energy barriers for rotations by the phenylene and pyridinium rings in the tetracationic cyclophane component of the [2]catenanes. Where there are co-conformational changes that are stereochemically "allowed", crown ether circumrotation and rocking processes are also investigated for the relative rates of their occurrence. The outcome is one whereby the three [2]catenanes containing BPP34C10, 1/5NPPP36C10, and 1/5DNP38C10 exist as one major enantiomeric pair of diastereoisomers amongst two, four, and eight diastereoisomeric pairs of enantiomers, respectively. The diastereoisomerism is a consequence of the presence of axial chirality together with helical and/or planar chirality in the same interlocked molecule. These [2]catenanes constitute a rich reserve of new stereochemical types that might be tapped for their switching and mechanical properties.  相似文献   

2.
Four donor-acceptor [2]catenanes with cyclobis(paraquat-p-phenylene) (CBPQT4+) as the pi-electron-accepting cyclophane and 1,5-dioxynaphthalene (DNP)-containing macrocyclic polyethers as pi-electron donor rings have been synthesized under mild conditions, employing Cu+-catalyzed Huisgen 1,3-dipolar cycloaddition and Cu2+-mediated Eglinton coupling in the final steps of their syntheses. Oligoether chains carrying terminal alkynes or azides were used as the key structural features in template-directed cyclizations of [2]pseudorotaxanes to give the [2]catenanes. Both reactions proceed well with precursors of appropriate oligoether chain lengths but fail when there are only three oxygen atoms in the oligoether chains between the DNP units and the reactive functional groups. The solid-state structures of the donor-acceptor [2]catenanes confirm their mechanically interlocked nature, stabilized by [pi...pi], [C-H...pi], and [C-H...Omicron] interactions, and point to secondary noncovalent contacts between 1,3-butadiyne and 1,2,3-triazole subunits and one of the bipyridinum units of the CBPQT4+ ring. These contacts are characterized by the roughly parallel orientation of the inner bipyridinium ring system and the 1,2,3-triazole and 1,3-butadiyne units, as well as by the short [pi...pi] distances of 3.50 and 3.60 A, respectively. Variable-temperature 1H NMR spectroscopy has been used to identify and quantify the barriers to the conformationally and co-conformationally dynamic processes. The former include the rotations of the phenylene and the bipyridinium ring systems around their substituent axes, whereas the latter are confined to the circumrotation of the CBPQT4+ ring around the DNP binding site. The barriers for the three processes were found to be successively 14.4, 14.5-17.5, and 13.1-15.8 kcal mol-1. Within the limitations of the small dataset investigated, emergent trends in the barrier heights can be recognized: the values decrease with the increasing size of the pi-electron-donating macrocycle and tend to be lower in the sterically less encumbered series of [2]catenanes containing the 1,3-butadiyne moiety.  相似文献   

3.
As the host possessing the largest cavity in the cucurbit[n]uril (CB[n]) family, CB[10] has previously displayed unusual recognition and assembly properties with guests but much remains to be explored. Herein, we present the recognition properties of CB[10] toward a series of bipyridinium guests including the tetracationic cyclophane known as blue box along with electron‐rich guests and detail the influence of encapsulation on the charge‐transfer interactions between guests. For the mono‐bipyridinium guest (methylviologen, MV 2+), CB[10] not only forms 1:1 and 1:2 inclusion complexes, but also enhances the charge‐transfer interactions between methylviologen and dihydroxynaphthalene ( HN ) by mainly forming the 1:2:1 packed “sandwich” complex (CB[10] ? 2 MV 2+ ?HN ). For guest 1 with two bipyridinium units, an interesting conformational switching from linear to “U” shape is observed by adding catechol to the solution of CB[10] and the guest. For the tetracationic cyclophane‐blue box, CB[10] forms a stable 1:1 inclusion complex; the two bipyridinium units tilt inside the cavity of CB[10] according to the X‐ray crystal structure. Finally, a supramolecular “Russian doll” was built up by threading a guest through the cavities of both blue box and CB[10].  相似文献   

4.
Three [2]catenanes and three [3]catenanes incorporating one or two pi-electron-rich macrocyclic polyethers and one pi-electron-deficient polycationic cyclophane have been synthesized in yields ranging from 4 to 38%. The pi-electron-rich macrocyclic components possess either two 1,4-dioxybenzene or two 1.5-dioxynaphthalene recognition sites. The pi-electron-deficient cyclophane components incorporate two bipyridinium and either one or two dialkylammonium recognition sites. The template-directed syntheses of these catenanes rely on i) pi...pi stacking interactions between the dioxyarene and bipyridinium recognition sites, ii) C-H...O hydrogen bonds between some of the bipyridinium hydrogen atoms and some of the polyether oxygen atoms, and iii) C-H...pi interactions between some of the dioxyarene hydrogen atoms and the aromatic spacers separating the bipyridinium units. The six catenanes were characterized by mass spectrometry and by both 1H and 13C NMR spectroscopy. The absorption spectra and the electrochemical properties of the catenanes have been investigated and compared with those exhibited by the component macrocycles and by related known catenanes. Broad and weak absorption bands in the visible region, originating from charge-transfer (CT) interactions between electron-donor and electron-acceptor units, have been observed. Such charge-transfer interactions are responsible for the quenching of the potentially fluorescent excited states of the aromatic units of the macrocyclic polyether components. The redox behavior of these novel compounds has been investigated and correlations among the observed redox potentials are illustrated and discussed. The catenanes undergo co-conformational switching upon one-electron reduction of the two bipyridinium units. One of them--in its reduced form--can be also switched by acid/base inputs and exhibits AND logic behavior. The co-conformational rearrangements induced by the redox and acid/base stimulations lend themselves to exploitation in the development of molecular-level machines and logic gates.  相似文献   

5.
A supramolecular homodimer is formed in solution and in the solid state by a self-complementary [2]catenane incorporating a 1,5-dioxynaphthalene-based macrocyclic polyether interlocked with a bipyridinium-based tetracationic cyclophane (shown schematically). This unique example of self-recognition is the result of a combination of cooperative pi small middle dot small middle dot small middle dotpi and C-H small middle dot small middle dot small middle dotpi interactions.  相似文献   

6.
The tetracationic cyclophane, cyclobis(paraquat-4,4'-biphenylene), binds 1,1'-disubstituted ferrocene-based polyethers as a result of (i) [pi...pi] stacking between the pi-electron-deficient bipyridinium units and the pi-electron-rich cyclopentadienyl rings and (ii) [C-H...O] hydrogen bonds between the alpha-bipyridinium hydrogen atoms and the polyether oxygen atoms. However, even the presence of a bulky tetraarylmethane group--which is too large to thread through the cavity of the cyclophane host--at the end of each of the two polyether substituents of the ferrocene-containing guest does not discourage adduct formation of the inclusion type. Thus, in these adducts, the ferrocene unit of the guest is located inside the cavity of the host with its two polyether chains protruding outward from the same side of the host. The alternative pseudorotaxane geometry is not observed in solutions of these 1:1 adducts. The host-guest adducts display absorption bands in the visible spectral region, characteristic of charge-transfer interactions. In the case of one of these adducts, reversible decomplexation/recomplexation takes place upon electrochemical oxidation/reduction of the ferrocene-based unit or upon reduction/oxidation of the tetracationic cyclophane.  相似文献   

7.
A [2]catenane, which incorporates hydroquinone (HQ) and a sterically bulky tetrathiafulvalene (TTF) into a bismacrocycle, has been designed to probe the alongside charge-transfer (CT) interactions taking place between a TTF unit and one of the bipyridinium moieties in the tetracationic cyclophane cyclobis(paraquat-p-phenylene) (CBPQT4+). A template-directed strategy employs the HQ unit as the primary template for formation of the tetracationic cyclophane CBPQT4+, affording the desired [2]catenane structure but as an uncharacteristic green solid. The X-ray crystal structure and detailed 13C NMR assignments have identified a stereoselective preference for catenation about the cis isomer. The 1H NMR spectroscopy, electrochemistry, and X-ray crystallography all confirm that the CBPQT4+ cyclophane encircles the HQ unit, thereby defining a structure which would normally determine a red color. The visible-NIR region of the absorption spectrum displays a band at approximately 740 nm that is unambiguously assigned to a TTF --> CBPQT4+ CT transition on the basis of resonance Raman spectroscopy using 785 nm excitation. The profile of the CT band changes depending on the ratio of the cis- to trans-TTF isomers in the [2]catenane for which the molar absorptivity of each isomer is estimated to be significantly different at epsilon max = 380 and 3690 M-1 cm-1, respectively. Molecular modeling studies confirmed that the observed difference in the absorption spectroscopic profile can be accounted for by both a better overlap of the HOMO(TTF) and LUMO+1(CBPQT4+) as well as a more stable face-to-face (pi...pi) conformation in the trans isomer compared to the edge-to-face cis isomer of the [2]catenane. The latter is arranged for pi-orbital overlap through the sulfur atoms of the TTF unit, thereby defining an [Spi...pi] interaction.  相似文献   

8.
Two [2]catenanes incorporating bispyrrolotetrathiafulvalene (BPTTF) and weaker aryl donors, hydroquinone (HQ) and 1,5-dioxynaphthalene (DNP), respectively, have been prepared and characterized. These [2]catenanes show a predominant amount (>95:5) of the co-conformation in which either the HQ or the DNP unit is encircled by a tetracationic cyclophane, cyclobis(paraquat-p-phenylene) (CBPQT4+), contrary to what is observed in systems based on the parent tetrathiafulvalene (TTF). These new [2]catenanes act effectively as molecular switches which are always configured in the "on" state.  相似文献   

9.
The synthesis of a functionally rigid [2]rotaxane incorporating pi-electron rich 1,5-disubstituted naphthalene (NP) ring systems, encircled by the pi-electron deficient tetracationic cyclophane, cyclobis(paraquat-p-phenylene), is described; in the solid state, the molecules of this donor-acceptor [2]rotaxane line themselves up in parallel pi-pi stacks of alternating NP ring systems and bipyridinium units, affording an interdigitated superstructure.  相似文献   

10.
A series of donor–acceptor [2]‐, [3]‐, and [4]rotaxanes and self‐complexes ([1]rotaxanes) have been synthesized by a threading‐followed‐by‐stoppering approach, in which the precursor pseudorotaxanes are fixed by using CuI‐catalyzed Huisgen 1,3‐dipolar cycloaddition to attach the required stoppers. This alternative approach to forming rotaxanes of the donor–acceptor type, in which the donor is a 1,5‐dioxynaphthalene unit and the acceptor is the tetracationic cyclophane cyclobis(paraquat‐p‐phenylene), proceeds with enhanced yields relative to the tried and tested synthetic strategies, which involve the clipping of the cyclophane around a preformed dumbbell containing π‐electron‐donating recognition sites. The new synthetic approach is amenable to application to highly convergent sequences. To extend the scope of this reaction, we constructed [2]rotaxanes in which one of the phenylene rings of the tetracationic cyclophane is perfluorinated, a feature which significantly weakens its association with π‐electron‐rich guests. The activation barrier for the shuttling of the cyclophane over a spacer containing two triazole rings was determined to be (15.5±0.1) kcal mol?1 for a degenerate two‐station [2]rotaxane, a value similar to that previously measured for analogous degenerate compounds containing aromatic or ethylene glycol spacers. The triazole rings do not seem to perturb the shuttling process significantly; this property bodes well for their future incorporation into bistable molecular switches.  相似文献   

11.
We report a new host molecule in which one diethylene glycol chain (i.e., a loop possessing only three oxygen atoms) incorporated along with two phenolic aromatic rings is linked by a xylene spacer into a macroring. The design of the molecular structure of this macrocycle "amplifies" any potential [cation...pi], [N+-H...pi], and [N+C-H...pi] interactions between the dibenzylammonium (DBA+) ion and the phenolic rings of the macrocycle; as such, these species display a very strong binding affinity in CD3NO2 (Ka = 15,000 M(-1)). The macroring also coordinates to bipyridinium ions in a [2]pseudorotaxane fashion, which makes it the smallest macrocycle (i.e., a 25-membered ring) known to complex both DBA+ and bipyridinium ions in solution. To confirm unambiguously that these pseudorotaxanes exist in solution, we synthesized their corresponding interlocked molecules, namely rotaxanes and catenanes.  相似文献   

12.
The template effects exerted by bis(p-phenylene)[34]crown-10 (3) and by 1,5-dinaphto[38]crown-10 (4) in the ring-closure reaction of the trication 2(3+) to yield the [2]catenanes 7(4+) and 8(4+) have been quantitatively evaluated in acetonitrile at 62 degrees C by UV/visible spectroscopy. The rate of ring closure of the trication 2(3+) dramatically increases in the presence of the templates 3 and 4, up to approximately 230 times at [3] approximately equals 0.1 molL(-1), and up to approximately 1,900 times at [4] approximately equals 0.01 molL(-1). The outcome of kinetic selection experiments, in which the two crown ethers compete for the incorporation into the catenane structure, has been discussed in the light of the obtained results. It has been shown that the product ratio of catenanes obeys the Curtin-Hammett principle only if the concentrations of the templates are equal and much greater than that of the substrate. Analysis of the rate profiles has shown that the 1,5-dioxynaphthalene unit, present in the template 4, has a greater affinity than the 1,4-dioxybenzene unit, present in the template 3, for the electron-deficient pyridinium rings present in both the transition-state and substrate structures. Ab initio calculations at the 3-21G and 6-31G(d) levels of theory indicate that the greater affinity of the 1,5-dioxynaphthalene unit cannot be explained on the basis of greater pi-pi stacking and [C-H...pi] interactions, but rather on the basis of the model of apolar complexation in which the solvent plays a major role.  相似文献   

13.
A color change from purple to green takes place on addition of tetrathiafulvalene (TTF) to the macrobicyclic receptor 1 4+, which is composed of a cyclobis(paraquat-p-phenylene) tetracation that shares one of its paraphenylene rings with a 1,5-naphthoparaphenylene-[36]crown-10 macrocycle. The TTF molecule forces the macrobicycle to turn inside out (see schematic drawing below) and displaces the self-complexed 1,5-dioxynaphthalene ring system from the center of the tetracationic cyclophane.  相似文献   

14.
[reaction: see text] A random copolymer containing 1,5-dialkyloxynaphthalene moieties has been synthesized using atom-transfer radical polymerization. We have shown that this polymer has the ability to form complexes with the tetracationic cyclophane cyclobis(paraquat-p-phenylene) (CBPQT(4+)) and that electrochemical reduction of the cyclophane or the addition of a competing guest for the cavity of the cyclophane results in disassembly of the supramolecular polymer.  相似文献   

15.
Encouraged by the prospect of producing an electrochemical, color‐switchable red–green–blue (RGB) dye compound, we have designed, synthesized, and characterized two three‐station [2]catenanes. Both are composed of macrocyclic polyethers containing three π‐electron‐rich stations, which act as recognition sites for a π‐electron‐deficient tetracationic cyclophane. The molecular structures of the two three‐station [2]catenanes were characterized fully by mass spectrometry and 1H NMR spectroscopy. To anticipate the relative occupancies of the three stations in each [2]catenane by the cyclophane, model compounds with the same constitutions in the vicinity of the stations were synthesized. The relative ground‐state populations of the three stations occupied in both [2]catenanes were estimated from the thermodynamic parameters for 1:1 complexes between all these model compounds and the cyclophane, obtained from isothermal titration calorimetry (ITC). The electrochemical and electromechanical properties of the three‐station [2]catenanes were analyzed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and spectroelectrochemistry (SEC). The first three‐station [2]catenane was found to behave like a bistable system, whereas the second can be described as a quasi‐tristable system.  相似文献   

16.
Two naphthalene(NP) and bipyridinium(BIPY~(2+)) alternately incorporated polymers P1 and P2 have been prepared through the formation of dynamic hydrazone bonds. The polymers formed NP–BIPY~(2+)donor–acceptor interaction-induced pleated secondary structure. Upon reducing the BIPY~(2+)units to radical cation BIPY+, intramolecular dimerization of the BIPY+units induced the backbones to afford another pleated secondary structure. Adding electron-rich macrocyclic polyether bis-1,5-dinaphtho[38]crown-10 or electron-deficient cyclobis(paraquat-p-phenylene) cyclophane did not break the first foldamer by complexing the BIPY2+or NP units of the polymers, whereas the di(radical cationic)ring of the second cyclophane could break the second foldamer by forming threading complexes with the BIPY+units of the polymers.  相似文献   

17.
A [2]catenane in which the macrocyclic polyether, bisparaphenylene[34]crown-10, is interlocked with the tetracationic cyclophane, cyclobis(paraquat-p-phenylene), is shown by dynamic (1)H NMR spectroscopy, using (i). neutral and (ii). anionic chiral shift reagents (CSRs), to exist at low temperatures (197 K) in acetone-d(6) solutions as 1:1 and 2:1 mixtures of diastereoisomeric complexes and salts, respectively, as a consequence of the helical chirality associated with the [2]catenane interacting with the CSRs.  相似文献   

18.
Two redox-active bistable [2]catenanes composed of macrocyclic polyethers of different sizes incorporating both electron-rich 1,5-dioxynaphthalene (DNP) and electron-deficient 4,4'-bipyridinium (BIPY(2+)) units, interlocked mechanically with the tetracationic cyclophane cyclobis(paraquat-p-phenylene) (CBPQT(4+)), were obtained by donor-acceptor template-directed syntheses in a threading-followed-by-cyclization protocol employing Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloadditions in the final mechanical-bond forming steps. These bistable [2]catenanes exemplify a design strategy for achieving redox-active switching between two translational isomers, which are driven (i) by donor-acceptor interactions between the CBPQT(4+) ring and DNP, or (ii) radical-radical interactions between CBPQT(2(?+)) and BIPY(?+), respectively. The switching processes, as well as the nature of the donor-acceptor interactions in the ground states and the radical-radical interactions in the reduced states, were investigated by single-crystal X-ray crystallography, dynamic (1)H NMR spectroscopy, cyclic voltammetry, UV/vis spectroelectrochemistry, and electron paramagnetic resonance (EPR) spectroscopy. The crystal structure of one of the [2]catenanes in its trisradical tricationic redox state provides direct evidence for the radical-radical interactions which drive the switching processes for these types of mechanically interlocked molecules (MIMs). Variable-temperature (1)H NMR spectroscopy reveals a degenerate rotational motion of the BIPY(2+) units in the CBPQT(4+) ring for both of the two [2]catenanes, that is governed by a free energy barrier of 14.4 kcal mol(-1) for the larger catenane and 17.0 kcal mol(-1) for the smaller one. Cyclic voltammetry provides evidence for the reversibility of the switching processes which occurs following a three-electron reduction of the three BIPY(2+) units to their radical cationic forms. UV/vis spectroscopy confirms that the processes driving the switching are (i) of the donor-acceptor type, by the observation of a 530 nm charge-transfer band in the ground state, and (ii) of the radical-radical ilk in the switched state as indicated by an intense visible absorption (ca. 530 nm) and near-infrared (ca. 1100 nm) bands. EPR spectroscopic data reveal that, in the switched state, the interacting BIPY(?+) radical cations are in a fast exchange regime. In general, the findings lay the foundations for future investigations where this radical-radical recognition motif is harnessed in bistable redox-active MIMs in order to achieve close to homogeneous populations of co-conformations in both the ground and switched states.  相似文献   

19.
The ability to control the kinetic barriers governing the relative motions of the components in mechanically interlocked molecules is important for future applications of these compounds in molecular electronic devices. In this Full Paper, we demonstrate that bipyridinium (BIPY2+) dications fulfill the role as effective electrostatic barriers for controlling the shuttling and threading behavior for rotaxanes and pseudorotaxanes in aqueous environments. A degenerate [2]rotaxane, composed of two 1,5‐dioxynaphthalene (DNP) units flanking a central BIPY2+ unit in the dumbbell component and encircled by the cyclobis(paraquat‐p‐phenylene) (CBPQT4+) tetracationic cyclophane, has been synthesized employing a threading‐followed‐by‐stoppering approach. Variable‐temperature 1H NMR spectroscopy reveals that the barrier to shuttling of the CBPQT4+ ring over the central BIPY2+ unit is in excess of 17 kcal mol?1 at 343 K. Further information about the nature of the BIPY2+ unit as an electrostatic barrier was gleaned from related supramolecular systems, utilizing two threads composed of either two DNP units flanking a central BIPY2+ moiety or a central DNP unit flanked by a BIPY2+ moiety. The threading and dethreading processes of the CBPQT4+ ring with these compounds, which were investigated by spectrophotometric techniques, reveal that the BIPY2+ unit is responsible for affecting both the thermodynamics and kinetics of pseudorotaxane formation by means of an intramolecular self‐folding (through donor–acceptor interactions with the DNP unit), in addition to Coulombic repulsion. In particular, the free energy barrier to threading (Δ${G{{{\ne}\hfill \atop {\rm f}\hfill}}}The ability to control the kinetic barriers governing the relative motions of the components in mechanically interlocked molecules is important for future applications of these compounds in molecular electronic devices. In this Full Paper, we demonstrate that bipyridinium (BIPY(2+)) dications fulfill the role as effective electrostatic barriers for controlling the shuttling and threading behavior for rotaxanes and pseudorotaxanes in aqueous environments. A degenerate [2]rotaxane, composed of two 1,5-dioxynaphthalene (DNP) units flanking a central BIPY(2+) unit in the dumbbell component and encircled by the cyclobis(paraquat-p-phenylene) (CBPQT(4+)) tetracationic cyclophane, has been synthesized employing a threading-followed-by-stoppering approach. Variable-temperature (1)H?NMR spectroscopy reveals that the barrier to shuttling of the CBPQT(4+) ring over the central BIPY(2+) unit is in excess of 17 kcal mol(-1) at 343 K. Further information about the nature of the BIPY(2+) unit as an electrostatic barrier was gleaned from related supramolecular systems, utilizing two threads composed of either two DNP units flanking a central BIPY(2+) moiety or a central DNP unit flanked by a BIPY(2+) moiety. The threading and dethreading processes of the CBPQT(4+) ring with these compounds, which were investigated by spectrophotometric techniques, reveal that the BIPY(2+) unit is responsible for affecting both the thermodynamics and kinetics of pseudorotaxane formation by means of an intramolecular self-folding (through donor-acceptor interactions with the DNP unit), in addition to Coulombic repulsion. In particular, the free energy barrier to threading (ΔG(f)(++)) of the CBPQT(4+) for the case of the thread composed of a DNP flanked by two BIPY(2+) units was found to be as high as 21.7 kcal mol(-1) at room temperature. These results demonstrate that we can effectively employ the BIPY(2+) unit to serve as electrostatic barriers in water in order to gain control over the motions of the CBPQT(4+) ring in both mechanically interlocked and supramolecular systems.  相似文献   

20.
A supramolecular cation of (m-FAni(+))(DB[18]crown-6), where m-FAni(+) and DB[18]crown-6 denote m-fluoroanilinium(+) and dibenzo[18]crown-6, respectively, which is the polar unit rotating in the ferroelectric crystal of (m-FAni(+))(DB[18]crown-6)[Ni(dmit)(2)](-), was introduced into a ferromagnetic [MnCr(oxalate)(3)](-) salt as the counter cation. The crystal structure of (m-FAni(+))(DB[18]crown-6)[MnCr(oxalate)(3)](-)(CH(3)OH)(CH(3)CN) (1) is constructed from alternating layers of a two-dimensional honeycomb layer of [MnCr(oxalate)(3)](-) and (m-FAni(+))(DB[18]crown-6) supramolecular cations. The anionic layer is composed of Mn(II) and Cr(III) ions with S = 5/2 and S = 3/2 spins, respectively, bridged by the oxalate anions, which show ferromagnetic ordering at 5.5 K. The supramolecular structure is formed through the formation of hydrogen bonds between the ammonium hydrogen atoms of the m-FAni(+) cations and the oxygen atoms of the DB[18]crown-6 cavity. No orientational disorder of the fluorine atoms was observed in our X-ray structural analysis, suggesting that a two-fold flip-flop motion of the m-FAni(+) cations does not occur in the salt. The rotational freedom of the m-FAni(+) cations in the salt is restricted by the steric hindrance from neighbouring DB[18]crown-6 molecules. A design strategy for the rotation in a salt is discussed, based on the volume that the supramolecular cations occupy in the unit cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号