首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rotational spectrum of the 1,1-difluoroprop-2-ynyl radical, F2*C-C[triple bond]CH, a partially fluorinated variant of the propargyl radical, has been recorded in the ground electronic, 2B1, state using pulsed discharge, pulsed-jet, Fabry-Perot Fourier transform microwave spectroscopy. Five successive a-type rotational transitions, from N = 1-0 to N = 5-4, and Ka = 0, 1, and 2, were measured between 6.5 and 32.5 GHz with an uncertainty of 5 kHz. The molecular constants, including fine and hyperfine constants, were precisely determined. These constants are compared with our predictions based on a density functional theory level ab initio calculations and with the fine and hyperfine constants of the propargyl radical. The measured electron spin densities suggest that both the difluoropropargyl and the difluoroallenyl resonance forms [F2*C-C[triple bond]CH<-->F2C=C=C*H] make major contributions to the electronic structure of the radical.  相似文献   

2.
We report density functional and coupled cluster calculations on numerous monocyclic and bicyclic (CH)12(*-) isomers. At the RCCSD(T)/cc-pVDZ//UB3LYP/6-31+G* level, a nearly planar, bond-equalized radical anion of 1,7-di-trans-[12]annulene (4a(*-)) is lowest in energy; several other isomers and conformations lie within 3 kcal/mol of 4a(*-). RCCSD(T)/AUG-cc-pVDZ//UB3LYP/6-31+G* results place the all-cis isomer 3(*-) slightly below 4a(*-) in energy. Validation studies on the heptalene radical anion, [16]annulene radical anion, and tri-trans-[12]annulene radical anion indicate that electron spin resonance (ESR) hyperfine coupling constants (aH values) computed at the BLYP/EPR-III level on DFT geometries give much better agreement with experimental values than those computed using B3LYP/6-31G*. We were unable to locate any C12H12(*-) isomer that could account for the ESR spectrum previously attributed to a highly twisted structure for the 1,7-di-trans-[12]annulene radical anion. Our computed energetic and ESR data for [12]annulene radical anions and their valence isomers suggest that 4a(*-) may have been made, yet its ESR spectrum was incorrectly assigned to the bicyclic isomer 6b(*-). Finally, the computed (1)H NMR shift values of the dianion of 4 reveal a distinct diatropic ring current that should aid in its characterization.  相似文献   

3.
The reactions of hydrated electron (eaq-) with various radicals have been studied in pulse radiolysis experiments. These radicals are hydroxyl radical (*OH), sulfite radical anion (*SO3-), carbonate radical anion (CO3*-), carbon dioxide radical anion (*CO2-), azidyl radical (*N3), dibromine radical anion (Br2*-), diiodine radical anion (I2*-), 2-hydroxy-2-propyl radical (*C(CH3)2OH), 2-hydroxy-2-methyl-1-propyl radical ((*CH2)(CH3)2COH), hydroxycyclohexadienyl radical (*C6H6OH), phenoxyl radical (C6H5O*), p-methylphenoxyl radical (p-(H3C)C6H4O*), p-benzosemiquinone radical anion (p-OC6H4O*-), and phenylthiyl radical (C6H5S*). The kinetics of eaq- was followed in the presence of the counter radicals in transient optical absorption measurements. The rate constants of the eaq- reactions with radicals have been determined over a temperature range of 5-75 degrees C from the kinetic analysis of systems of multiple second-order reactions. The observed high rate constants for all the eaq- + radical reactions have been analyzed with the Smoluchowski equation. This analysis suggests that many of the eaq- + radical reactions are diffusion-controlled with a spin factor of 1/4, while other reactions with *OH, *N3, Br2*-, I2*-, and C6H5S* have spin factors significantly larger than 1/4. Spin dynamics for the eaq-/radical pairs is discussed to explain the different spin factors. The reactions with *OH, *N3, Br2*-, and I2*- have also been found to have apparent activation energies less than that for diffusion control, and it is suggested that the spin factors for these reactions decrease with increasing temperature. Such a decrease in spin factor may reflect a changing competition between spin relaxation/conversion and diffusive escape from the radical pairs.  相似文献   

4.
The reactions between either a hydrogen atom or a hydroxyl radical and 5-methylcytosine (5-MeCyt) are studied by using the hybrid kinetic energy meta-GGA functional MPW1B95. *H atom and *OH radical addition to positions C5 and C6 of 5-MeCyt, or *OH radical induced H-abstraction from the C5 methyl group, are explored. All systems are optimized in bulk solvent. The data presented show that the barriers to reaction are very low: ca. 7 kcal/mol for the *H atom additions and 1 kcal/mol for the reactions involving the *OH radical. Thermodynamically, the two C6 radical adducts and the *H-abstraction product are the most stable ones. The proton hyperfine coupling constants (HFCC), computed at the IEFPCM/MPW1B95/6-311++G(2d,2p) level, agree well with B3LYP results and available experimental and theoretical data on related thymine and cytosine radicals.  相似文献   

5.
Density functional theory (DFT) calculations of EPR parameters and their structure sensitivity for selected surface paramagnetic species involved in oxidative dehydrogenation of methanol over silica grafted molybdenum catalyst were investigated. Two surface complexes, Mo(4c)/SiO2 and {O(-)-Mo(4c)}/SiO2, as well as *CH2OH radical trapped on the SiO2 matrix were taken as the examples. The spin-restricted zeroth order regular approximation (ZORA) implemented in the Amsterdam Density Functional suite was used to calculate the electronic g tensor for those species. The predicted values were in satisfactory agreement with experimental EPR results. Five different coordination modes of the *CH2OH radical on the silica surface were considered and the isotropic 13C, 17O, and 1H hyperfine coupling constants (HFCC) of the resultant surface complexes were calculated. Structure sensitivity of the HFCC values was discussed in terms of the angular deformations caused by hydrogen bonding with the silica surface.  相似文献   

6.
Functionalization of the N2 ligand in the side-on bound dinitrogen complex, [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2), has been accomplished by addition of terminal alkynes to furnish acetylide zirconocene diazenido complexes, [(eta5-C5Me4H)2Zr(C[triple bond]CR)]2(mu2,eta2,eta2-N2H2) (R = nBu, tBu, Ph). Characterization of [(eta5-C5Me4H)2Zr(C[triple bond]CCMe3)]2(mu2,eta2,eta2-N2H2) by X-ray diffraction revealed a side-on bound diazenido ligand in the solid state, while variable-temperature 1H and 15N NMR studies established rapid interconversion between eta1,eta1 and eta2,eta2 hapticity of the [N2H2]2- ligand in solution. Synthesis of alkyl, halide, and triflato zirconocene diazenido complexes, [(eta5-C5Me4H)2ZrX]2(mu2,eta1,eta1-N2H2) (X = Cl, I, OTf, CH2Ph, CH2SiMe3), afforded eta1,eta1 coordination of the [N2H2]2- fragment both in the solid state and in solution, demonstrating that sterically demanding, in some cases pi-donating, ligands can overcome the electronically preferred side-on bonding mode. Unlike [(eta5-C5Me4H)2ZrH]2(mu2,eta2,eta2-N2H2), the acetylide and alkyl zirconocene diazenido complexes are thermally robust, resisting alpha-migration and N2 cleavage up to temperatures of 115 degrees C. Dinitrogen functionalization with [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) was also accomplished by addition of proton donors. Weak Br?nsted acids such as water and ethanol yield hydrazine and (eta5-C5Me4H)2Zr(OH)2 and (eta5-C5Me4H)2Zr(OEt)2, respectively. Treatment of [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) with HNMe2 or H2NNMe2 furnished amido or hydrazido zirconocene diazenido complexes that ultimately produce hydrazine upon protonation with ethanol. These results contrast previous observations with [(eta5-C5Me5)2Zr(eta1-N2)]2(mu2,eta1,eta1-N2) where loss of free dinitrogen is observed upon treatment with weak acids. These studies highlight the importance of cyclopentadienyl substituents on transformations involving coordinated dinitrogen.  相似文献   

7.
Molecular orbital energy minimizations were performed with the B3LYP/6-31G(d) method on a [((OH)3SiO)3SiOH-(H3O+).4(H2O)] cluster to follow the reaction path for hydrolysis of an Si-O-Si linkage via proton catalysis in a partially solvated system. The Q3 molecule was chosen (rather than Q2 or Q1) to estimate the maximum activation energy for a fully relaxed cluster representing the surface of an Al-depleted acid-etched alkali feldspar. Water molecules were included in the cluster to investigate the influence of explicit solvation on proton-transfer reactions and on the energy associated with hydroxylating the bridging oxygen atom (Obr). Single-point energy calculations were performed with the B3LYP/6-311+G(d,p) method. Proton transfer from the hydronium cation to an Obr requires sufficient energy to suggest that the Si-(OH)-Si species will occur only in trace quantities on a silica surface. Protonation of the Obr lengthens the Si-Obr bond and allows for the formation of a pentacoordinate Si intermediate ([5]Si). The energy required to form this species is the dominant component of the activation energy barrier to hydrolysis. After formation of the pentacoordinate intermediate, hydrolysis occurs via breaking the [5]Si-(OH)-Si linkage with a minimal activation energy barrier. A concerted mechanism involving stretching of the [5]Si-(OH) bond, proton transfer from the Si-(OH2)+ back to form H3O+, and a reversion of [5]Si to tetrahedral coordination was predicted. The activation energy for Q3Si hydrolysis calculated here was found to be less than that reported for Q3Si using a constrained cluster in the literature but significantly greater than the measured activation energies for the hydrolysis of Si-Obr bonds in silicate minerals. These results suggest that the rate-limiting step in silicate dissolution is not the hydrolysis of Q3Si-Obr bonds but rather the breakage of Q2 or Q1Si-Obr bonds.  相似文献   

8.
The reactions of [Cp*MCl2]2(Cp*=eta5-C5Me5, M = Rh, Ir) with thiacalix[4]arene (TC4A(OH)4) and tetramercaptothiacalix[4]arene (TC4A(SH)4) gave the mononuclear complexes [(Cp*M){eta3-TC4A(OH)2(O)2}] and the dinuclear complexes [(Cp*M)2{eta3eta3-TC4A(S)4}] respectively, while the analogous reactions with dimercaptothiacalix[4]arene (TC4A(OH)2(SH)2) produced the tetranuclear complexes [(Cp*M)2(Cp*MCl2)2-{eta3eta3eta1eta1-TC4A(O)2(S)2}].  相似文献   

9.
The carbon dioxide radical anion (CO2*-) is known to be generated in vivo through various chemical and biochemical pathways. Electron paramagnetic resonance (EPR) spin trapping with the commonly used spin trap, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), has been employed in the detection of CO2*-. The thermodynamics of CO2*- addition to DMPO was predicted using density functional theory (DFT) at the B3LYP/6-31++G**//B3LYP/6-31G* and B3LYP/6-311+G* levels with the polarizable continuum model (PCM) to simulate the effect of the bulk dielectric effect of water on the calculated energetics. Three possible products of CO2*- addition to DMPO were predicted: (1) a carboxylate adduct, (2) pyrroline-alcohol and (3) DMPO-OH. Experimentally, UV photolysis of H2O2 in the presence of sodium formate (NaHCO2) and DMPO gave an EPR spectrum characteristic of a C-centered carboxylate adduct and is consistent with the theoretically derived hyperfine coupling constants (hfcc). The pKa of the carboxylate adduct was estimated computationally to be 6.4. The mode of CO2*- addition to DMPO is predicted to be governed predominantly by the spin (density) population on the radical, whereas electrostatic effects are not the dominant factor for the formation of the persistent adduct. The thermodynamic behavior of CO2*- in the aqueous phase is predicted to be similar to that of mercapto radical (*SH), indicating that formation of CO2*- in biological systems may have an important role in the initiation of oxidative damage in cells.  相似文献   

10.
The beta-carotene radical cation and deprotonated neutral radicals were studied at the density functional theory (DFT) level using different density functionals and basis sets: B3LYP/3-21G, SVWN5/6-31G*, BPW91/DGDZVP2, and B3LYP/6-31G**. The geometries, total energies, spin distributions, and isotropic and anisotropic hyperfine coupling constants of these species were calculated. Deprotonation of the methyl group at the double bond of the cyclohexene ring of the carotenoid radical cation at 5 or 5' produces the most stable neutral radical because of retention of the pi-conjugated system while less stable deprotonation at 9 or 9' and 13 or 13' of the chain methyl groups causes significant distortion of the conjugation. The predicted methyl hyperfine coupling constants of 13-16 MHz of the neutral radicals are in good agreement with the previous electron nuclear double resonance (ENDOR) spectrum of photolyzed beta-carotene on a solid support. DFT calculations on the beta-carotene radical cation in a polar water environment showed that the polar environment does not cause significant changes in the proton hyperfine constants from those in the isolated gas-phase molecule. DFT calculated methyl proton hyperfine coupling constants of less than 7.2 MHz are in agreement with those reported for the radical cation in photosystem II (PS II) and those found in the absence of UV light for the radical cation on a silica alumina matrix.  相似文献   

11.
2-pyridinethione (2-mercaptopyridine, H-2mp) undergoes rapid oxidative addition with 2 mol of the 17-electron organometallic radical *Cr(CO)3Cp (where Cp*=C5Me5), yielding hydride H-Cr(CO)3Cp* and thiolate (eta1-2mp)Cr(CO)3Cp*. In a slower secondary reaction, (eta1-2mp)Cr(CO)3Cp* loses CO generating the N,S-chelate complex (eta2-2mp)Cr(CO)2Cp* for which the crystal structure is reported. The rate of 2-pyridine thione oxidative addition with *Cr(CO)3Cp* (abbreviated *Cr) in toluene best fits rate=kobs[H-2mp][*Cr]; kobs(288 K)=22 +/- 4 M(-1) s(-1); DeltaH++=4 +/- 1 kcal/mol; DeltaS++=- 40 +/- 5 cal/mol K. The rate of reaction is the same under CO or Ar, and the reaction of deuterated 2-pyridine thione (D-2mp) shows a negligible (inverse) kinetic isotope effect (kD/kH=1.06 +/- 0.10). The rate of decarbonylation of (eta1-2mp)Cr(CO)3Cp* forming (eta2-2mp)Cr(CO)2Cp* obeys simple first-order kinetics with kobs (288 K)=3.1x10(-4) s(-1), DeltaH++=23 +/- 1 kcal/mol, and DeltaS++=+ 5.0 +/- 2 cal/mol K. Reaction of 4-pyridine thione (4-mercaptopyridine, H-4mp) with *Cr(CO)3Cp* in THF and CH2Cl2 also follows second-order kinetics and is approximately 2-5 times faster than H-2mp in the same solvents. The relatively rapid nature of the thione versus thiol reactions is attributed to differences in the proposed 19-electron intermediate complexes, [*(S=C5H4N-H)Cr(CO)3Cp*] versus [*(H-S-C6H5)Cr(CO)3Cp*]. In comparison, reactions of pyridyl disulfides occur by a mechanism similar to that followed by aryl disulfides involving direct attack of the sulfur-sulfur bond by the metal radical. Calorimetric data indicate Cr-SR bond strengths for aryl and pyridyl derivatives are similar. The experimental conclusions are supported by B3LYP/6-311+G(3df,2p) calculations, which also provide additional insight into the reaction pathways open to the thione/thiol tautomers. For example, the reaction between H* radical and the 2-pyridine thione S atom yielding a thionyl radical is exothermic by approximately 30 kcal/mol. In contrast, the thiuranyl radical formed from the addition of H* to the 2-pyridine thiol S atom is predicted to be unstable, eliminating either H* or HS* without barrier.  相似文献   

12.
The structures, energetics, spectroscopies, and isomerization of various doublet Si2CP species are explored theoretically. In contrast to the previously studied SiC2N and SiC2P radicals that have linear SiCCN and SiCCP ground states, the title Si2CP radical has a four-membered-ring form cSiSiPC 1 (0.0 kcal/mol) with Si-C cross-bonding as the ground-state isomer at the CCSD(T)/6-311G(2df)//B3LYP/6-311G(d)+ZPVE level, similar to the Si2CN radical. The second low-lying isomer 2 at 11.6 kcal/mol has a SiCSiP four-membered ring with C-P cross-bonding, yet it is kinetically quite unstable toward conversion to 1 with a barrier of 3.5 kcal/mol. In addition, three cyclic species with divalent carbene character, i.e., cSiSiCP 7, 7' with C-P cross-bonding and cSiCSiP 8 with Si-Si cross-bonding, are found to possess considerable kinetic stability, although they are energetically high lying at 44.4, 46.5, and 41.4 kcal/mol, respectively. Moreover, a linear isomer SiCSiP 5 at 44.3 kcal/mol also has considerable kinetic stability and predominantly features the interesting cumulenic /Si=C=Si=P/* form with a slight contribution from the silicon-phosphorus triply bonded form /Si=C*-Si[triple bond]P/. The silicon-carbon triply bonded form *Si[triple bond]C-Si[triple bond]P/ has negligible contribution. All five isomers are expected to be observable in low-temperature environments. Their bonding nature and possible formation strategies are discussed. For relevant species, the QCISD/6-311G(d) and CCSD(T)/6-311+G(2df) (single-point) calculations are performed to provide more reliable results. The calculated results are compared to those of the analogous C3N, C3P, SiC2N, and Si2CN radicals with 17 valence electrons. Implications in interstellar space and P-doped SiC vaporization processes are also discussed.  相似文献   

13.
The crystalline dimeric 1-azaallyllithium complex [Li{mu,eta(3-N(SiMe3)C(Ad)C(H)SiMe3}]2 (1) was prepared from equivalent portions of Li[CH(SiMe3)2] and 1-cyanoadamantane (AdCN). Complex was used as precursor to each of the crystalline complexes 2-8 which were obtained in good yield. By 1-azaallyl ligand transfer, 1 afforded (i) [Al{eta3-N(SiMe3)C(Ad)C(H)SiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (5) with [AlCl2Me](2), (ii) [Sn{eta3-N(SiMe3)C(Ad)C(H)SiMe3}2] (7) with Sn[N(SiMe3)2]2, and (iii) [Li(N{C(Ad)=C(H)SiMe3-E}{Si(NN)SiMe3})(thf)2] (8) with the silylene Si[(NCH(2)Bu(t))2C6H(4)-1,2] [= Si(NN)]. By insertion into the C[triple bond, length as m-dash]N bond of the appropriate cyanoarene RCN, gave the beta-diketiminate [Li{mu-N(SiMe3)C(Ad)C(H)C(R)NSiMe3}]2 [R = Ph (2), C(6)H(4)Me-4 (3)], and yielded [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (6). The beta-diketiminate [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}Me2] (4) was prepared from 2 and [AlClMe2]2. The X-ray structures of 1 and 3-8 are presented. Multinuclear NMR spectra in C6D6 or C6D5CD3 have been recorded for each of 1-8; such data on 8 revealed that in solution two minor isomers were also present.  相似文献   

14.
A family of new Fischer-type rhenium(III) benzoyldiazenido-2-oxacyclocarbenes of formula [(ReCl2[eta1-N2C(O)Ph][=C(CH2)nCH(R)O](PPh3)2][n = 2, R = H (2), R = Me (3); n = 3, R = H (4), R = Me (5)] have been prepared by reaction of [ReCl2[eta2-N2C(Ph)O](PPh3)2] (1) with omega-alkynols, such as 3-butyn-1-ol, 4-pentyn-1-ol, 4-pentyn-2-ol, 5-hexyn-2-ol in refluxing THF. The correct formulation of the carbene derivatives 2-5 has been unambiguously determined in solution by NMR analysis and confirmed for compounds 2-4 by X-ray diffraction methods in the solid state. All complexes are octahedral with the benzoyldiazenido ligand, Re[N2C(O)Ph], adopting a "single bent" conformation. The coordination basal plane is completed by an oxacyclocarbene ligand and two chlorine atoms. Two triphenylphosphines in trans positions with respect to each other complete the octahedral geometry around rhenium. The reactivity of 1 towards different alkynes and alkenes including propargyl- and allylamine has been also studied. With propargyl amine, monosubstituted or bisubstituted complexes, [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2C triple bond CH]n(PPh3)(3-n)][n= 1 (6); n = 2 (7)], have been isolated depending on the reaction conditions. In contrast, the reaction with allylamine gave only the disubstituted complex [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2CH=CH2]2(PPh3)] (8). The molecular structure of the monosubstituted adduct has been confirmed by X-ray analysis in the solid state.  相似文献   

15.
Tris[(2-indole)methyl]amine, N(CH2inH)3, may be readily obtained by reaction of methyl 2-bromomethyl-1-indolecarboxylate with NH3 followed by deprotection with NaOMe/MeOH. In its deprotonated form, [N(CH2in)3]3- is an efficient tetradentate trianionic ligand for tantalum, as illustrated by the isolation and structural characterization of [eta 4-N(CH2in)3]Ta(NAr)(NMe2H) (Ar = 2,6-C6H3Pri2), [eta 4-N(CH2in)3]Ta(NMe2)2 and [eta 4-N(CH2in)3]Ta(NMe2)Cl. The [N(CH2in)3]3- ligand has a structural similarity to that of [N(CH2CH2NR)3]3-, but differs electronically from the latter due to its reduced pi-donor capability, a direct result of the nitrogen being a component of the aromatic pi-system of the indolyl fragment.  相似文献   

16.
This paper reports the organolanthanide-catalyzed intramolecular hydroamination/cyclization of amine-tethered unactivated 1,2-disubstituted alkenes to afford the corresponding mono- and disubstituted pyrrolidines and piperidines using coordinatively unsaturated complexes of the type (eta(5)-Me(5)C(5))(2)LnCH(TMS)(2) (Ln = La, Sm), [Me(2)Si(eta(5)-Me(4)C(5))(2)]SmCH(TMS)(2), and [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]LnE(TMS)(2) (Ln = Sm, Y, Yb, Lu; E = N, CH) as precatalysts. [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]LnE(TMS)(2) mediates intramolecular hydroamination/cyclization of sterically demanding amino-olefins to afford disubstituted pyrrolidines in high diastereoselectivity (trans/cis = 16/1) and good to excellent yield. In addition, chiral C(1)-symmetric organolanthanide catalysts of the type [Me(2)Si(OHF)(CpR*)]LnN(TMS)(2) (OHF = eta(5)-octahydrofluorenyl; Cp = eta(5)-C(5)H(3); R* = (-)-menthyl; Ln = Sm, Y), and [Me(2)Si(eta(5)-Me(4)C(5))(CpR*)]SmN(TMS)(2) (Cp = eta(5)-H(3)C(5); R* = (-)-menthyl) mediate asymmetric intramolecular hydroamination/cyclization of amines bearing internal olefins and afford chiral 2-substituted piperidine and pyrrolidine in enantioselectivities as high as 84:16 er at 60 degrees C. The substrate of the structure NH(2)CH(2)CMe(2)CH(2)CH=CH(CH(2))(2)CH=CH(2) is regiospecifically bicyclized by [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]LnE(TMS)(2) to the corresponding indolizidine skeleton in good yield and high diastereoselectivity. Thermolysis of (eta(5)-Me(5)C(5))(2)LaCH(TMS)(2) in cyclohexane-d(12) at 120 degrees C rapidly releases CH(2)(SiMe(3))(2) and leads to possible formation of fulvene (eta(6)-Me(4)C(5)CH(2)-) species. The thermolysis product readily reverts to active catalysts upon protonolysis by substrate and exhibits the same catalytic activity as the (eta(5),eta(1)-Me(5)C(5))(2)LaCH(TMS)(2) precatalyst at 120 degrees C in the cyclization of cis-2,2-dimethylhept-5-enylamine. Catalytically-active lanthanide-amido complexes (eta(5)-Me(5)C(5))(2)La(NHR)(NH(2)R)(n) and [Me(2)Si(eta(5)-Me(4)C(5))((t)BuN)]Sm(NHR)(NH(2)R)(n) are shown to be thermally robust species.  相似文献   

17.
Treatment of [{TiCp*(mu-NH)} 3(mu 3-N)] ( 1; Cp* = eta (5)-C 5Me 5) with yttrium and erbium halide complexes [MCl 3(THF) 3.5] and [MCpCl 2(THF) 3] (Cp = eta (5)-C 5H 5) gives cube-type adducts [Cl 3M{(mu 3-NH) 3Ti 3Cp* 3(mu 3-N)}] and [CpCl 2M{(mu 3-NH) 3Ti 3Cp* 3(mu 3-N)}]. An analogous reaction of 1 with [{MCp 2Cl} 2] in toluene affords [Cp 3M(mu-Cl)ClCpM{(mu 3-NH) 3Ti 3Cp* 3(mu 3-N)}] (M = Y, Er).  相似文献   

18.
Methyl radicals interacting with silica gel surfaces have been investigated by means of DFT and direct ab-initio molecular dynamics (MD) methods using cluster models. Four typical binding sites of CH3 on the cluster models were found in the geometry optimization from several initial geometries of CH3 around the silica gel clusters. These were two silanol Si–OH sites and two siloxane Si–O–Si sites. In both sites, magnitude of hyperfine coupling constants of the methyl radical (aH) was smaller than that of free CH3 (aH = 23.04 G). Temperature effects on aH of the methyl radical were investigated by means of the direct ab-initio MD method. The hyperfine coupling constant of CH3 interacting with the SiOH group decreased with increasing temperature. The methyl radical interacting with alkali metal supported silica gel was also investigated for comparison. The electronic states of methyl radicals on silica gel were discussed on the basis of theoretical results.  相似文献   

19.
Spin trapping by 5,5-dimethylpyrroline-N-oxide (DMPO) was used for the detection of radicals in Fenton media in the presence and absence of Nafion perfluorinated ionomers. For ethanol as solvent, the same types of spin adducts were detected in the presence or absence of Nafion. Solvent-derived adducts, DMPO/*OC2H5 and DMPO/*CH(OH)CH3, were identified, and their presence was rationalized by Fe(III)-catalyzed nucleophilic addition of ethanol to the spin trap and hydrogen abstraction by *OH radicals; oxygen radical adducts, DMPO/*O2(-) and DMPO/*OOH, were also detected. In Fenton media with methanol as solvent (and no Nafion), the DMPO/*O2(-) adduct dominated immediately after sample preparation, and a mixture consisting of DMPO/*OCH3, DMPO/*CH3, DMPO/*O2(-), and DMPO/*OOH adducts was detected after 30 min. In the presence of Nafion, only the adduct DMPO/*OH was detected. For water as solvent, only the DMPO/*OH adduct was detected, in both the absence and the presence of Nafion. The full hyperfine tensor components of this adduct were determined in Fenton media in the presence of Nafion with water and methanol as solvents. In Nafion/water exposed to the Fenton reagent at 358 K for 3 h, a DMPO adduct of a carbon-centered radical was also identified and assigned to a Nafion-derived fragment; its exact nature is under investigation. Variations of the 14N and Hbeta hyperfine splittings of a given adduct with the local polarity were key to the identification of some DMPO adducts, in particular DMPO/*O2(-). Both *OOH and O2*- adducts, with different 14N and Hbeta splittings, were detected simultaneously in some samples, for the first time in the spin trapping literature. Comparison with the results of a direct electron spin resonance study of Nafion exposed to the Fenton reagent indicated that spin trapping by DMPO can provide complementary information on the type of radicals present during Nafion degradation. The spin trapping approach described in this paper is limited, however, to systems that do not contain organic solvents.  相似文献   

20.
The previously unknown radical anions of unsaturated E2N4S2 ring systems (E=RC, R2NC, R2P) can be generated voltammetrically by the one-electron reduction of the neutral species and, despite half-lives on the order of a few seconds, have been unambiguously characterized by electron paramagnetic resonance (EPR) spectroelectrochemistry using a highly sensitive in situ electrolysis cell. Cyclic voltammetric studies using a glassy-carbon working electrode in CH3CN and CH2Cl2 with [nBu4N][PF6] as the supporting electrolyte gave reversible formal potentials for the [E2N4S2]0/- process in the range of -1.25 to -1.77 V and irreversible peak potentials for oxidation in the range of 0.66 to 1.60 V (vs the Fc+/0 couple; Fc=ferrocene). Reduction of the neutral compound undergoes an electrochemically reversible one-electron transfer, followed by the decay of the anion to an unknown species via a first-order (chemical) reaction pathway. The values of the first-order rate constant, kf, for the decay of all the radical anions in CH2Cl2 have been estimated from the decay of the EPR signals for (X-C6H4CN2S)2*-, where X=4-OCH3 (kf=0.04 s(-1)), 4-CH3 (kf=0.02 s(-1)), 4-H (kf=0.08 s(-1)), 4-Cl (kf=0.05 s(-1)), 4-CF3 (kf=0.05 s(-1)), or 3-CF3 (kf=0.07 s(-1)), and for [(CH3)3CCN2S]2*- (kf=0.02 s(-1)), [(CH3)2NCN2S]2*- (kf=0.05 s(-1)), and [(C6H5)2PN2S]2*- (kf=0.7 s(-1)). Values of kf for X=4-H and for [(CH3)2NCN2S]2*- were also determined from the cyclic voltammetric responses (in CH2Cl2) and were both found to be 0.05 s(-1). Possible pathways for the first-order anion decomposition that are consistent with the experimental observations are discussed. Density functional theory calculations at the UB3LYP/6-31G(d) level of theory predict the structures of the radical anions as either planar (D2h) or folded (C2v) species; the calculated hyperfine coupling constants are in excellent agreement with experimental results. Linear correlations were observed between the voltammetrically determined potentials and both the orbital energies and Hammett coefficients for the neutral aryl-substituted rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号