首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
由EET理论直接建立了Sm2Fe17N3晶体的价电子结构,同时计算并筛选了晶体的结合能和最强键能,分别为EC^0=14716.8±13.7kJ·mol^-1和Eα=110.1311 kJ·mol^-1。分析计算结果表明:Sm2Fe17N3晶体内共价电子数主要分布在12对由Fe(c1),Fe(c2)和Fe(c3)参与形成的最强键能的键上,由这3种Fe晶位原子形成的共价键键距普遍小于0.3 nm,共价键较强对晶体结合能作主要贡献;并且其结合能相比Sm2Fe17晶体的小得多,解释了Sm2Fe17合金在低温和非真空状态条件下易氧化而经过渗氮后得到的Sm2Fe17N3则表现出常温下结构稳定、化学性能好的特性;计算出N原子参与形成的成键原子对的理论键能值普遍在1 kJ·mol^-1左右,反映出Sm2Fe17N3化合物内在渗氮特性,分析了制备钐铁氮永磁材料过程中Sm2Fe17合金较低温渗氮难、渗氮不稳定和渗氮不均匀的缺陷。  相似文献   

2.
通过X射线衍射和穆斯堡尔谱等手段研究金属间化物(Sm1-xYx)2Fe17Ny中的各向异性产生机制。结果表明,(1)Sm次格子的单轴各向异性较强,对总的各向异性贡献起主导机制;(2)N原子的占位与自旋磁结构密切相关,而与晶体结构无关,N原子的双重占位导致单轴各向异性;(3)Y原子的择优占位导致晶体结构的变化,而对各向异性影响较小。  相似文献   

3.
Sm2Fe17-xSbx的化学合成与磁性质   总被引:3,自引:0,他引:3  
稀土与铁形成的 L n2 Fe17金属间化合物的居里温度较低 ,不能用于永磁材料 .近年来的研究表明 ,当 L n2 Fe17金属间化合物的间隙格位被氮占据时可大大提高材料的居里温度和饱和磁化强度 [1,2 ] ,但由于形成的金属氮化物属于热力学亚稳相 ,因而只能用于粘结磁体 .为得到性能更好、更加稳定的稀土永磁材料 ,人们对其它元素取代的 Ln2 Fe17进行了大量的研究 ,发现一些主族和过渡金属元素 (如 Al,Ga,Cr或 Si等 )取代 Sm2 Fe17中的部分铁可以改善材料的磁性能 [3] ;从以往对铁系金属间化合物的结构与磁性的研究可以知道 ,部分取代使稀土 -铁…  相似文献   

4.
5.
The compounds RE4FeGa(12-x)Ge(x) (RE = Sm, Tb) were discovered in reactions employing molten Ga as a solvent at 850 degrees C. However, the isostructural Y4FeGa(12-x)Ge(x) was prepared from a direct combination reaction. The crystal structure is cubic with space group Imm, Z = 2, and a = 8.657(4) A and 8.5620(9) A for the Sm and Tb analogues, respectively. Structure refinement based on full-matrix least squares on F(o)2 resulted in R1 = 1.47% and wR2 = 4.13% [I > 2(I)] for RE = Sm and R1 = 2.29% and wR2 = 7.12% [I > 2(I)] for RE = Tb. The compounds crystallize in the U4Re7Si6 structure type, where the RE atoms are located on 8c (1/4, 1/4, 1/4) sites and the Fe atoms on 2a (0, 0, 0) sites. The distribution of Ga and Ge in the structure, investigated with single-crystal neutron diffraction on the Tb analogue, revealed that these atoms are disordered over the 12d (1/4, 0, 1/2) and 12e (x, 0, 0) sites. The amount of Ga/Ge occupying the 12d and 12e sites refined to 89(4)/11 and 70(4)/30%, respectively. Transport property measurements indicate that these compounds are metallic conductors. Magnetic susceptibility measurements and M?ssbauer spectroscopy performed on the Tb analogue show a nonmagnetic state for Fe, while the Tb atoms carry a magnetic moment corresponding to a mu(eff) of 9.25 mu(B).  相似文献   

6.
Charge, orbital, and magnetic ordering of NdBaFe(2)O(5) and HoBaFe(2)O(5), the two end-members of the double-cell perovskite series RBaFe(2)O(5), have been characterized over the temperature range 2-450 K, using differential scanning calorimetry, neutron thermodiffractometry and high-resolution neutron powder diffraction. Upon cooling, both compounds transform from a class-III mixed valence (MV) compound, where all iron atoms exist as equivalent MV Fe(2.5+) ions, through a "premonitory" charge ordering into a class-II MV compound, and finally to a class-I MV phase at low-temperature. The latter phase is characterized by Fe(2+)/Fe(3+) charge ordering as well as orbital ordering of the doubly occupied Fe(2+) d(xz) orbitals. The relative simplicity of the crystal and magnetic structure of the low-temperature charge-ordered state provide an unusual opportunity to fully characterize the classical Verwey transition, first observed in magnetite, Fe(3)O(4). Despite isotypism of the title compounds at high temperature, neutron diffraction analysis reveals striking differences in their phase transitions. In HoBaFe(2)O(5), the Verwey transition is accompanied by a reversal of the direct Fe-Fe magnetic coupling across the rare earth layer, from ferromagnetic in the class-II and -III MV phases to antiferromagnetic in the low-temperature class-I MV phase. In NdBaFe(2)O(5), the larger Nd(3+) ion increases the Fe-Fe distance, thereby weakening the Fe-Fe magnetic interaction. This decouples the charge and magnetic ordering so that the Fe-Fe interaction remains ferromagnetic to low temperature. Furthermore, the symmetry of the charge-ordered class-I MV phase is reduced from Pmma to P2(1)()ma and the magnitude of the orbital ordering is diminished. These changes destabilize the charge-ordered state and suppress the temperature at which the Verwey transition occurs. A comparison of the magnetic and structural features of RBaFe(2)O(5) compounds is included in order to illustrate how structural tuning, via changes in the radius of the rare-earth ion, can be used to alter the physical properties of these double-cell perovskites.  相似文献   

7.
A series of Ln(tmtaa)(Htmtaa)·CH_2Cl_2(Ln=Sm,Tb,Er and Yb)complexes were prepared and characterized byinfrared spectra,mass spectra and molecular electronic spectroscopy as well as DSC measurement.A sandwichstructure containing all the eight nitrogen atoms of tmtaa and Htmtaa was proposed for these complexes.X-rayphotoelectron spectra(XPS)of these complexes revealed that four nitrogen atoms of both tmtaa and Htmtaa werechemically equivalent to each other,respectively.The acidic hydrogen of Htmtaa did not bind specifically to any ni-trogen atom of Htmtaa,but was shared by all the four nitrogen atoms.The magnetic properties of these complexeswere found to be in good agreement with their theoretical values.  相似文献   

8.
We present the synthesis, characterization by DT-TGA and IR, single crystal X-ray nuclear structure at 300 K, nuclear and magnetic structure from neutron powder diffraction on a deuterated sample at 1.4 K, and magnetic properties as a function of temperature and magnetic field of Ni(3)(OH)(2)(SO(4))(2)(H(2)O)(2). The structure is formed of chains, parallel to the c-axis, of edge-sharing Ni(1)O(6) octahedra, connected by the corners of Ni(2)O(6) octahedra to form corrugated sheets along the bc-plane. The sheets are connected to one another by the sulfate groups to form the 3D network. The magnetic properties measured by ac and dc magnetization, isothermal magnetization at 2 K, and heat capacity are characterized by a transition from a paramagnet (C = 3.954 emu K/mol and theta = -31 K) to a canted antiferromagnet at T(N) = 29 K with an estimated canting angle of 0.2-0.3 degrees. Deduced from powder neutron diffraction data, the magnetic structure is modeled by alternate pairs of Ni(1) within a chain having their moments pointing along [010] and [010], respectively. The moments of Ni(2) atoms are oppositely oriented with respect to their adjacent pairs. The resulting structure is that of a compensated arrangement of moments within one layer, comprising one ferromagnetic and three antiferromagnetic superexchange pathways between the nickel atoms.  相似文献   

9.
A series of layered oxides of nominal composition SrFe(1-x)Mn(x)O(2) (x = 0, 0.1, 0.2, 0.3) have been prepared by the reduction of three-dimensional perovskites SrFe(1-x)Mn(x)O(3-δ) with CaH(2) under mild temperature conditions of 583 K for 2 days. The samples with x = 0, 0.1, and 0.2 exhibit an infinite-layer crystal structure where all of the apical O atoms have been selectively removed upon reduction. A selected sample (x = 0.2) has been studied by neutron powder diffraction (NPD) and X-ray absorption spectroscopy. Both techniques indicate that Fe and Mn adopt a divalent oxidation state, although Fe(2+) ions are under tensile stress whereas Mn(2+) ions undergo compressive stress in the structure. The unit-cell parameters progressively evolve from a = 3.9932(4) ? and c = 3.4790(4) ? for x = 0 to a = 4.00861(15) ? and c = 3.46769(16) ? for x = 0.2; the cell volume presents an expansion across the series from V = 55.47(1) to 55.722(4) ?(3) for x = 0 and 0.2, respectively, because of the larger effective ionic radius of Mn(2+) versus Fe(2+) in four-fold coordination. Attempts to prepare Mn-rich compositions beyond x = 0.2 were unsuccessful. For SrFe(0.8)Mn(0.2)O(2), the magnetic properties indicate a strong magnetic coupling between Fe(2+) and Mn(2+) magnetic moments, with an antiferromagnetic temperature T(N) above room temperature, between 453 and 523 K, according to temperature-dependent NPD data. The NPD data include Bragg reflections of magnetic origin, accounted for with a propagation vector k = ((1)/(2), (1)/(2), (1)/(2)). A G-type antiferromagnetic structure was modeled with magnetic moments at the Fe/Mn position. The refined ordered magnetic moment at this position is 1.71(3) μ(B)/f.u. at 295 K. This is an extraordinary example where Mn(2+) and Fe(2+) ions are stabilized in a square-planar oxygen coordination within an infinite-layer structure. The layered SrFe(1-x)Mn(x)O(2) oxides are kinetically stable at room temperature, but in air at ~170 °C, they reoxidize and form the perovskites SrFe(1-x)Mn(x)O(3-δ). A cubic phase is obtained upon reoxidation of the layered compound, whereas the starting precursor SrFeO(2.875) (Sr(8)Fe(8)O(23)) was a tetragonal superstructure of perovskite.  相似文献   

10.
Bi(0.9)Sm(0.1)Fe(1-x)Mn(x)O(3), with x=0.00, 0.15, 0.30 have been synthesised by solid-state reaction. The structures of the materials, characterised via Rietveld analysis of high resolution powder neutron diffraction data, reveal a structural transition from R3c to orthorhombic Imma symmetry is complete for the x=0.30 sample. The antiferromagnetic ordering temperature, magnitude of the ordered magnetic moment at the B-site, and the dielectric constant all decrease as a function of increasing Mn content.  相似文献   

11.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

12.
用X射线衍射仪,振动样品磁强计,扫描电镜及透射电镜对Sm2Fe15.3Zr0.2Al1.5C1.5合金的微结构和磁性进行了研究。合金主要由2/17相、α-Fe相和ZrC要组成。  相似文献   

13.
Investigations in the ternary RE-Mn-Bi systems where RE is an early rare earth element have revealed the existence of the polybismuthides RE3MnBi5 (RE = La-Nd), previously known only for the Ce member, and the new compound Sm2Mn3Bi6. Their structures were determined from single-crystal X-ray diffraction data. The RE3MnBi5 compounds adopt the hexagonal inverse Hf5Cu3Sn-type structure (Pearson symbol hP18, space group P63/mcm, a = 9.7139(11)-9.5438(16) A, c = 6.4883(7)-6.4089(11) A for RE = La-Nd), containing chains of face-sharing Mn-centered octahedra. Sm2Mn3Bi6 adopts a new monoclinic structure type (Pearson symbol mP22, space group P21/m, a = 10.3917(8) A, b = 4.4557(3) A, c = 13.2793(10) A, beta = 108.0100(10) degrees ) in which the Mn centers are coordinated by Bi atoms in diverse geometries (distorted octahedral, trigonal bipyramidal, and distorted tetrahedral (seesaw)) and participate in extensive metal-metal bonding in the form of chains of Mn3 clusters. Homoatomic bonding interactions involving nominally anionic Bi atoms are manifested as one-dimensional Bi chains in RE3MnBi5 and as four-atom-wide Bi ribbons in Sm2Mn3Bi6. Electrical resistivity measurements on single crystals revealed metallic behavior with prominent transitions near 40 K for RE3MnBi5 and 50 K for Sm2Mn3Bi6. Magnetic susceptibility measurements showed that Pr3MnBi5 undergoes magnetic ordering near 25 K.  相似文献   

14.
Zeng YF  Xu GC  Hu X  Chen Z  Bu XH  Gao S  Sañudo EC 《Inorganic chemistry》2010,49(21):9734-9736
Through the combination of Sm(III) spin carriers with a Fe(III) system, the largest Fe-Ln cluster so far has been synthesized. To our knowledge, the new complex, Fe(12)Sm(4), is the first Sm(III) single-molecule magnet. Furthermore, Fe(12)La(4) and Fe(12)Gd(4) have also been synthesized to help understand the magnetic exchange interactions and origin of magnetic anisotropy in Fe(12)Sm(4).  相似文献   

15.
YBaFe(2)O(5) has been synthesized by heating a nanoscale citrate precursor in a carefully controlled reducing environment. Successful synthesis of a single-phase sample can only be achieved in a narrow window of oxygen partial pressures and temperatures. YBaFe(2)O(5) adopts an oxygen-deficient perovskite-type structure, which contains double layers of corner sharing FeO(5) square pyramids separated by Y(3+) ions. At T(N) congruent with 430 K, tetragonal (P4/mmm) and paramagnetic YBaFe(2)O(5) orders antiferromagnetically (AFM) experiencing a slight orthorhombic distortion (Pmmm). Around this temperature, it can be characterized as a class-III mixed valence (MV) compound, where all iron atoms exist as equivalent MV Fe(2.5+) ions. The magnetic structure is characterized by AFM Fe-O-Fe superexchange coupling within the double layers and a ferromagnetic Fe-Fe direct-exchange coupling between neighboring double layers. Upon cooling below approximately 335 K, a premonitory charge ordering (2Fe(2.5+) --> Fe(2.5+delta) + Fe(2.5)(-delta)) into a class-II MV phase takes place. This transition is detected by differential scanning calorimetry, but powder diffraction techniques fail to detect any volume change or a long-range structural order. At approximately 308 K, a complete charge ordering (2Fe(2.5+) --> Fe(2+) + Fe(3+)) into a class-I MV compound takes place. This charge localization triggers a number of changes in the crystal, magnetic, and electronic structure of YBaFe(2)O(5). The magnetic structure rearranges to a G-type AFM structure, where both the Fe-O-Fe superexchange and the Fe-Fe direct-exchange couplings are antiferromagnetic. The crystal structure rearranges (Pmma) to accommodate alternating chains of Fe(2+) and Fe(3+) running along b and an unexpectedly large cooperative Jahn-Teller distortion about the high-spin Fe(2+) ions. This order of charges does not fulfill the Anderson condition, and it rather corresponds to an ordering of doubly occupied Fe(2+) d(xz) orbitals. Comparisons with YBaMn(2)O(5) and YBaCo(2)O(5) are made to highlight the impact of changing the d-electron count.  相似文献   

16.
Synthesis and Properties of Iron(II) Complexes with tetra- and pentadentate N,S-Chelate Ligands. Crystal Structure of [Fe(GBMA)py] · py (GBMA2? = Glyoxal bis-(2-mercaptoanil)) The complexes glyoxal-bis-(2-mercaptoanil)iron(II) [Fe(GBMA)], diacetyl-bis-(2-mercaptoanil)iron(II), [Fe(DBMA)] and o-phthalaldehyde-bis-(2-mercaptoanil)iron(II) [Fe(PhBMA)] have been synthesized by reaction of the corresponding protonated ligands with anhydrous iron(II)-acetate. Pyridine-2,6-dialdehyde-bis-(2-mercaptoanil)iron(II), [Fe(PyBMA)] was obtained by a template synthesis with pyridine-2,6-dialdehyde, 2-aminothiophenol and iron(II)-acetate. Recrystallizing the complexes [Fe(GBMA)] and [Fe(DBMA)] from pyridine afforded [Fe(GBMA)py] · py and [Fe(DBMA)py] · py. For all complexes the magnetic properties have been determined, and the Mössbauer spectra were recorded at 82 K. Compounds [Fe(GBMA)] and [Fe(DBMA)] show quasi reversible redox properties in the cyclovoltammogram, while for [Fe(PhBMA)] an irreversible oxidation was observed. [Fe(GBMA)py] · py crystallizes in the monoclinic space group P21 with a = 1288.7(1), b = 1242.63(5), c = 1396.0(1) pm, β = 98.24(1)°, and Z = 4. In the neutral complex the Fe atom has a square pyramidal coordination with the pyridine nitrogen atom in apical position. The basal plane is formed by two nitrogen and two sulfur atoms of the ligand GBMA2?. The iron is located 40 pm above the pyramidal base. Its average distances to the donor atoms of the GBMA ligand are Fe? N = 190 pm, and Fe? S = 222 pm, while the distance to the nitrogen atom of the coordinated pyridine molecule is 207 pm.  相似文献   

17.
Three mononuclear iron complexes and one binuclear iron complex, [Fe(tpoen)Cl].0.5(Fe2OCl6) (1), [Fe(tpoen)Cl]PF6 (2), Fe(tpoen)Cl3 (3) and [[Fe(tpoen)]2(mu-O)](ClO4)4 (4) (tpoen = N-(2-pyridylmethoxyethyl)-N,N-bis(2-pyridylmethyl)amine), were synthesized as functional models of non-heme iron oxygenases. Crystallographic studies revealed that the Fe(II) center of 1 is in a pseudooctahedral environment with a pentadentate N4O ligand and a chloride ion trans to the oxygen atom. The Fe(III) center of 3 is ligated by three nitrogen atoms of tpoen and three chloride ions in a facial configuration. Each Fe(III) center of 4 is coordinated with four nitrogen atoms and an oxygen atom of tpoen with the Fe-O-Fe angle of 172.0(3) angstroms. Complexes 2, 3 and 4 catalysed the oxidation of cyclohexane with H2O2 in the total TNs of 24-36 with A/K ratios of 1.9-2.4. Under the same conditions they also catalysed both the oxidation of ethylbenzene to benzylic alcohol and acetobenzene with good activity (30-47 TN) and low selectivity (A/K 0.7), and the oxidation of adamantane with moderate activity (15-18 TN) and low regioselectivity (3 degrees/2 degrees 3.0-3.2). With mCPBA as oxidant the catalytic activities of 2, 3 and 4 increased 1.8 to 2.3-fold for the oxidation of cyclohexane and ethylbenzene and 6.3 to 7.5-fold for the oxidation of adamantane. Drastic enhancement of the regioselectivity was observed in the oxidation of adamantane (3 degrees/2 degrees 18.5-30.3).  相似文献   

18.
[(THF)2Na(Ph2N)2Sm{N(SiMe3)2}2], an Amido Complex of Samarium with a Sandwich-like Coordinated Sodium Ion The title compound has been prepared from Sm[N(SiMe3)2]3, NaN(SiMe3)3, and HNPh2 in THF solution forming yellow-green single crystals, which were characterized by a crystal structure determination. The complex forms an ion pair in which the sodium ion is coordinated by two THF molecules and by two phenyl groups of the diphenylamido groups in a sandwich-like fashion. The samarium atom is tetrahedrally coordinated by the four nitrogen atoms of the NPh2 and the N(SiMe3)2 ligands.  相似文献   

19.
A series of cyanide-bridged chain mixed Fe(III)/Ln(III) (Ln=Pr, Nd, Sm, Eu, Gd, Tb) complexes with the tridentate ligand 2,4,6-tri(2-pyridyl)-1,3,5-triazine (tptz) used as a capping group has been prepared. Reactions of tptz and LnCl3 with K3Fe(CN)6 yield a family of air-stable 1-D compounds {[Pr(tptz)(H2O)4Fe(CN)6].8H2O}infinity, {[Nd(tptz)(H2O)4Fe(CN)6].8H2O}infinity, {[Sm(tptz)(H2O)4Fe(CN)6].8H2O}, {[Eu(tptz)(H2O)4Fe(CN)6].6H2O}infinity, {[Gd(tptz)(H2O)4Fe(CN)6].6H2O}infinity, and {[Tb(tptz)(H2O)4Fe(CN)6].8H2O}infinity. Temperature dependent magnetic susceptibility studies of reveal that in , the Sm(III) and Fe(III) ions are ferromagnetically coupled with 3-D ordering occurring below 3.5 K. The appearance of the frequency dependent out-of-phase signal is explained in terms of an ordering with a spin glass-like behavior. To compare the magnetic behavior of with related compounds, {[Sm(tptz)(H2O)4Co(CN)6].8H2O}infinity and {[La(tptz)(DMF)(H2O)3Fe(CN)6].5H2O}infinity, {[Sm(tmphen)(DMF)3(H2O)Fe(CN)6].2H2O}infinity, {[Sm(tmphen)2(H2O)2Fe(CN)6].MeOH.13H2O}infinity and {[Sm(tmphen)2(H2O)2Cr(CN)6].MeOH.9H2O}infinity with 3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen) were also prepared.  相似文献   

20.
Two new quaternary aluminum silicides, RE8Ru12Al49Si9(Al(x)Si12-x) (x approximately 4; RE = Pr, Sm), have been synthesized from Sm (or Sm2O3), Pr, Ru, and Si in molten aluminum between 800 and 1000 degrees C in sealed fused silica tubes. Both compounds form black shiny crystals that are stable in air and NaOH. The Nd analog is also stable. The compounds crystallize in a new structural type. The structure, determined by single-crystal X-ray diffraction, is cubic, space group Pm3m with Z = 1, and has lattice parameters of a = 11.510(1) A for Sm8Ru12Al49Si9(Al(x)Si12-x) and a = 11.553(2) A for Pr8Ru12Al49Si9(Al(x)Si12-x) (x approximately 4). The structure consists of octahedral units of AlSi6, at the cell center, Si2Ru4Al8 clusters, at each face center, SiAl8 cubes, at the middle of the cell edges, and unique (Al,Si)12 cuboctohedral clusters, at the cell corners. These different structural units are connected to each other either by shared atoms, Al-Al bonds, or Al-Ru bonds. The rare earth metal atoms fill the space between various structural units. The Al/Si distribution was verified by single-crystal neutron diffraction studies conducted on Pr8Ru12Al49Si9(Al(x)Si12-x). Sm8Ru12Al49Si9(Al(x)Si12-x) and Pr8Ru12Al49Si9(Al(x)Si12-x) show ferromagnetic ordering at Tc approximately 10 and approximately 20 K, respectively. A charge of 3+ can be assigned to the rare earth atoms while the Ru atoms are diamagnetic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号