首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we solve an initial‐boundary value problem that involves a pde with a nonlocal term. The problem comes from a cell division model where the growth is assumed to be stochastic. The deterministic version of this problem yields a first‐order pde; the stochastic version yields a second‐order parabolic pde. There are no general methods for solving such problems even for the simplest cases owing to the nonlocal term. Although a solution method was devised for the simplest version of the first‐order case, the analysis does not readily extend to the second‐order case. We develop a method for solving the second‐order case and obtain the exact solution in a form that allows us to study the long time asymptotic behaviour of solutions and the impact of the dispersion term. We establish the existence of a large time attracting solution towards which solutions converge exponentially in time. The dispersion term does not appear in the exponential rate of convergence.  相似文献   

2.
In this paper, we consider a singular diffusion problem and show, by constructing a counterexample, that the weak solution to the problem is not unique. The proof consists of several steps. First, we prove that there exists a maximal weak solution to the problem. We show that the support of the continuous maximal weak solution cannot decrease in time. Then we cite an example of a nonnegative continuous function with shrinking support that also solves the problem, and therefore the problem possesses at least two weak solutions for some continuous nonnegative initial data.  相似文献   

3.
We consider the problem of an irrotational and incompressible flow around a body in space. The basic existence is proved by formulating the problem into a variational problem. We also show that the solution is unique, and the maximum speed is attained on the body's boundary.  相似文献   

4.
We study a nonlocal mixed problem for a nonlinear pseudoparabolic equation, which can, for example, model the heat conduction involving a certain thermodynamic temperature and a conductive temperature. We prove the existence, uniqueness and continuous dependence of a strong solution of the posed problem. We first establish for the associated linear problem a priori estimate and prove that the range of the operator generated by the considered problem is dense. The technique of deriving the a priori estimate is based on constructing a suitable multiplicator. From the resulted energy estimate, it is possible to establish the solvability of the linear problem. Then, by applying an iterative process based on the obtained results for the linear problem, we establish the existence, uniqueness and continuous dependence of the weak solution of the nonlinear problem.  相似文献   

5.
We study the Cauchy problem for quasilinear parabolic equation with inhomogeneous density and a source. We show that this problem has a global solution under the assumptions that initial datum is small enough in the integral sense and the source term has overcritical behaviour. The sharp estimates of a solution is obtained as well.  相似文献   

6.
We study a certain one-dimensional, degenerate parabolic partial differential equation with a boundary condition which arises in pricing of Asian options. Due to degeneracy of the partial differential operator and the non-smooth boundary condition, regularity of the generalized solution of such a problem remained unclear. We prove that the generalized solution of the problem is indeed a classical solution.  相似文献   

7.
We consider the global existence of classical solutions and blowup phenomena for a spatially one‐dimensional radiation hydrodynamics model problem, which consists of a scalar Burgers‐type equation coupled with a nonlocal advection‐reaction equation for radiation intensity. The model can be seen as an extension of the well‐known Hamer model that includes additionally the effects of scattering. It is well‐known that the initial value problem for Burgers' equation cannot be solved classically as soon as the derivative of the initial datum is negative somewhere. For our model problem, there is a critical negative number such that if the spatial derivative of the initial function is larger than this number, the associated initial‐value problem admits a global classical solution. However, when the spatial derivative of the initial data is below another negative threshold number, the initial value problem can also not be solved classically. Moreover, when there does not exist a global classical solution, it is shown that the first spatial derivative of solution must blow up in finite time. The results of the paper generalize the findings of Kawashima and Nishibata for the Hamer model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we consider an inverse problem of recovering the initial value for a generalization of time-fractional diffusion equation, where the time derivative is replaced by a regularized hyper-Bessel operator. First, we investigate the existence and regularity of our terminal value problem. Then we show that the backward problem is ill-posed, and we propose a regularizing scheme using a fractional Tikhonov regularization method. We also present error estimates between the regularized solution and the exact solution using two parameter choice rules.  相似文献   

9.
We study uniqueness of a solution for an inverse source problem arising in linear time-fractional diffusion equations with time dependent coefficients. New uniqueness results are formulated in Theorem 3.1. We also show optimality of the conditions under which uniqueness holds by explicitly constructing counterexamples, that is by constructing more than one solution in the case when the conditions for uniqueness are violated.  相似文献   

10.
We study the asymptotic behavior of solutions of the initial- boundary value problem, with periodic boundary conditions, for a fourth-order nonlinear degenerate diffusion equation with a logarithmic nonlinearity. For strictly positive and suitably small initial data we show that a positive solution exponentially approaches its mean as time tends to infinity. These results are derived by analyzing the equation verified by the logarithm of the solution.

  相似文献   


11.
张德悦  马富明 《东北数学》2005,21(2):165-174
In this paper, we consider the electromagnetic scattering by a periodic chiral structure. The media is homogeneous and the structure is periodic in one direction and invariant in another direction. The electromagnetic fields inside the chiral medium are governed by Maxwell equations together with the Drude-BornFedorov equations. We simplify the problem to a two-dimensional scattering problem and discuss the existence and the uniqueness of solutions by an integral equation approach. We show that for all but possibly a discrete set of wave numbers, the integral equation has a unique solution.  相似文献   

12.
The Fourier solution of the heat problem for a circular plate is generalized to a starlike shaped plate. We show that the classical solution can be used even in this more general case, provided that a suitable change of variables in the polar co-ordinate system is performed.  相似文献   

13.
We consider the optimal control problem for a system governed by a nonlinear hyperbolic equation without any constraints on the parameter of nonlinearity. No uniqueness theorem is established for a solution to this problem. The control-state mapping of this system is not Gateaux differentiable. We study an approximate solution of the optimal control problem by means of the penalty method.  相似文献   

14.
15.
In this paper, we consider the Cauchy problem for a generalized Boussinesq equation. We show that, under suitable conditions, a global solution for the initial value problem exists. In addition, we derive the sufficient conditions for the blow-up of the solution to the problem.  相似文献   

16.
In this article a numerical method for solving a two‐dimensional transport equation in the stationary case is presented. Using the techniques of the variational calculus, we find the approximate solution for a homogeneous boundary‐value problem that corresponds to a square domain D2. Then, using the method of the fictitious domain, we extend our algorithm to a boundary value problem for a set D that has an arbitrary shape. In this approach, the initial computation domain D (called physical domain) is immersed in a square domain D2. We prove that the solution obtained by this method is a good approximation of the exact solution. The theoretical results are verified with the help of a numerical example. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

17.
We consider an initial-boundary value problem for a one-dimensional parabolic equation with nonlocal boundary conditions. These nonlocal conditions are given in terms of integrals. Based on solution of the Dirichlet problem for the parabolic equation, we constructively establish the well-posedness for the nonlocal problem.  相似文献   

18.
M. Bertsch & R. Dal Passo proved the existence and uniqueness of the Cauchy problem for u_t = (φ(u),ψ(u_x))_x, where φ > 0, ψ is a strictly increasing function with lim_{s → ∞}ψ(s) = ψ_∞ < ∞. The regularity of the solution has been obtained under the condition φ" < 0 or φ = const. In the present paper, under the condition φ" ≤ 0, we give some regularity results. We show that the solution can be classical after a finite time. Further, under the condition φ" ≤ -α_0 (where -α_0 is a constant), we prove the gradient of the solution converges to zero uniformly with respect to x as t → +∞.  相似文献   

19.
20.
In the present paper, we study the initial inverse problem (backward problem) for a two-dimensional fractional differential equation with Riemann-Liouville derivative. Our model is considered in the random noise of the given data. We show that our problem is not well-posed in the sense of Hadamard. A truncated method is used to construct an approximate function for the solution (called the regularized solution). Furthermore, the error estimate of the regularized solution in L2 and Hτ norms is considered and illustrated by numerical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号