首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alternately Er doped Si-rich Al2O3 (Er:SRA) multilayer film, consisting of alternate Er-Si-codoped Al2O3 (Er:Si:Al2O3) and Si-doped Al2O3 (Si:Al2O3) sublayers, has been synthesized by co-sputtering from separated Er, Si, and Al2O3 targets. The dependence of Er3+ related photoluminescence (PL) properties on annealing temperatures over 700-1100 °C was studied. The maximum intensity of Er3+ PL, about 10 times higher than that of the monolayer film, was obtained from the multilayer film annealed at 950 °C. The enhancement of Er3+ PL intensity is attributed to the energy transfer from the silicon nanocrystals in the Si:Al2O3 sublayers to the neighboring Er3+ ions in the Er:Si:Al2O3 sublayers. The PL intensity exhibits a nonmonotonic temperature dependence: with increasing temperature, the integrated intensity almost remains constant from 14 to 50 K, then reaches maximum at 225 K, and slightly increases again at higher temperatures. Meanwhile, the PL integrated intensity at room temperature is about 30% higher than that at 14 K.  相似文献   

2.
The structural phase transition in annealed CaMn7O12 has been investigated by using high resolution synchrotron radiation powder diffraction. There is a phase coexistence phenomenon: two different crystallographic phases coexist in the material between 410 and 458 K. The first one is trigonal and it has a charge ordering (CO) of the Mn3+ and Mn4+ ions, while the second one is cubic and charge delocalized (CD). The volume fraction of the CD phase increases with temperature from 22% at 418 K up to 100% at 468 K. Both phases have domains of at least 150 nm at each temperature. The annealing of CaMn7O12 relaxed a part of the strains in the lattice, but did not influence the phase coexistence phenomenon.  相似文献   

3.
The objective of this study was to identify a material suitable to absorb radiation at the wavelength of neodymium-doped Yttrium Aluminum Garnet (Y3Al5O12:YAG), 1064 nm. M-(M= Sm3+, Co2+, Co3+, Cr3+, and Cr4+) doped highly transparent YAG ceramics were fabricated, and their absorption spectra were measured. Unlike Co2+ and Cr3+-doped ceramic samples, Co3+ and Cr4+ and Sm3+-doped:YAG ceramics were found to have significant absorption at 1064 nm. However, the Sm3+-doped YAG clearly emerged as the best candidate because it is also transparent at 808 nm, the pumping wavelength laser diode (LD), and also at most absorption bands used for flash-lamp pumping.  相似文献   

4.
We studied the spectroscopic characteristics of telluride glass with the host composition (0.85)TeO2-(0.15)WO3, containing 0.25 and 1.0 mol% thulium oxide (Tm2O3). By analyzing the absorption spectra with the Judd-Ofelt theory, the average radiative lifetimes of 305±7.5 μs and 1.95±0.02 ms were determined for the 3F4 and 3H4 levels, respectively. Measured fluorescence lifetime of the 3F4 level decreased from 218 to 51 μs for the 0.25 and 1.0 mol% Tm2O3 doped samples, respectively, indicating the effect of boosted non-radiative decay at higher doping concentrations. A similar trend was observed for the 3H4 level, where the fluorescence lifetime decreased from 1.86 ms to 350 μs at these concentrations. The quenching of the 1460 nm (3F43H4) emission in favor of the 1800 nm (3H43H6) emission due to cross relaxation was further evident in the fluorescence spectra of the samples. The calculated stimulated emission cross sections (3.73±0.1×10−21 cm2 at 1460 nm and 6.57±0.07×10−21 cm2 at 1808 nm) reveal the potential importance of the Tm3+:(0.85)TeO2-(0.15)WO3 glass for applications in fiber-optic amplifiers and fiber lasers.  相似文献   

5.
Growth of Ru- and RuO2-composite (ROC) nanodots on atomic-layer-deposited Al2O3 film has been studied for the first time using ion-beam sputtering followed by post-deposition annealing (PDA). X-ray photoelectron spectroscopy analyses reveal that RuO2 and Ru co-exist before annealing, and around 10% RuO2 is reduced to metallic Ru after PDA at 900 °C for 15 s. Scanning electron microscopy measurements show that well-defined spherical ROC nanodots are not formed till the PDA temperature is raised to 900 °C. The mean diameter of the nanodots enlarges with increasing PDA temperature whereas the nanodot density decreases, which is attributed to coalescence process between adjacent nanodots. It is further illustrated that the resulting nanodot size and density are weakly dependent on the annealing time, but are markedly influenced by the decomposition of RuO2. In this article, the ROC nanodots with a high density of 1.6 × 1011 cm−2, a mean diameter of 20 nm with a standard deviation of 3.0 nm have been achieved for the PDA at 900 °C for 15 s, which is promising for flash memory application.  相似文献   

6.
We have enhanced color-rendering property of a blue light emitting diode (LED) pumped white LED with yellow emitting Y3Al5O12:Ce3+ (YAG:Ce) phosphor using addition of Pr and Tb as a co-activator and host lattice element, respectively. Pr3+ addition to YAG:Ce phosphor resulted in sharp emission peak at about 610 nm through 1D23H4 transition. And when Tb3+ substituted Y3+ sites, Ce3+ emission band shifted to a longer wavelength due to larger crystal field splitting. Y3Al5O12:Ce3+, Pr3+ and (Y1−xTbx)3Al5O12:Ce3+ phosphors were coated on blue LEDs to fabricate white LEDs, respectively, and their color-rendering indices (CRIs, Ra) were measured. As a consequence of the addition of Pr3+ or Tb3+, CRI of the white LEDs improved to be Ra=83 and 80, respectively. Especially, blue LED pumped (Y0.2Tb0.8)3Al5O12:Ce3+ white LED showed both strong luminescence and high color-rendering property.  相似文献   

7.
Ta2O5 films were deposited on BK7 substrates by e-beam evaporation with different deposition parameters such as substrate temperature (323-623 K), oxygen pressure (0.5-3.0×10−2 Pa) and deposition rate (0.2-0.5 nm/s). Absorption, scattering and chemical composition were investigated by surface thermal lensing (STL) technique, total integrated scattering (TIS) measurement and X-ray photoelectron spectroscopy (XPS), respectively. The laser-induced damage threshold (LIDT) was assessed using pulsed Nd:YAG 1064 nm laser at a pulse length of 12 ns. The results showed that optical properties, absorption and LIDT were influenced by the deposition parameters and annealing. However, scattering was little correlated with the deposition parameters. On the whole, the LIDT increased with increasing substrate temperature and oxygen pressure, whereas it increased firstly and then decreased upon increasing deposition rate. After annealing at 673 K for 12 h, the LIDT of films improved significantly. The dependence of possible damage mechanism on deposition parameters was discussed.  相似文献   

8.
Upon substitution of non-magnetic Al3+ for diamagnetic, low-spin, Co3+ in ferromagnetic La2MnCoO6, the ferromagnetic moment, measured at 82 K and 15 kOe, is found to increase initially with Al content and then decreases, though the magnetic transition temperature decreases continuously on increasing x in La2MnCo1−xAlxO6.  相似文献   

9.
In this study, silicon nanocrystal-rich Al2O3 film has been prepared by co-sputtering a silicon and alumina composite target and subsequent annealing in N2 atmosphere. The microstructure of the film has been characterized by infrared (IR) absorption, Raman spectra and UV-absorption spectra. Typical nanocrystal and interface defects related photoluminescence with the photon energy of 1.54 (IR band) and 1.69 eV (R band) has been observed by PL spectrum analysis. A post-annealing process in oxygen atmosphere has been carried out to clarify the emission mechanism. Despite the red shift of the spectra, enhanced emission of the 1.69 eV band together with the weak emission phenomenon of the 1.54 eV band has been found after the post-annealing. The R band is discussed to originate from silicon nanocrystal interface defects. The IR band is concluded to be a coupling effect between electronic and vibrational emissions.  相似文献   

10.
ZnO-Al2O3 nanocomposite thin films were prepared by sol-gel technique. The room temperature synthesis was mainly based on the successful peptization of boehmite (AlO(OH)) and Al(OH)3 compounds, so as to use it as matrix to confine ZnO nanoparticles. The relative molar concentrations of xZnO to (1 − x) Al2O3 were varied as x = 0.1, 0.2 and 0.5. The optical absorption spectra of the thin films showed intense UV absorption peaks with long tails of variable absorption in the visible region of the spectra. The ZnO-Al2O3 nanocomposites thin films were doped with MgO by varying its molar concentrations as y = 0.05, 0.75, 0.1, 0.125, 0.15 and 0.2 with respect to the ZnO present in the composite. The MgO doped thin films showed suppression of the intense absorption peaks that was previously attained for undoped samples. The disappearance of the absorption peaks was analyzed in terms of the crystalline features and lattice defects in the nanocomposite system. The bulk absorption edge, which is reportedly found at 3.37 eV, was shifted to 5.44 eV (for y = 0.05), 5.63 eV (for y = 0.075) and maximum to 5.77 eV (for y = 0.1). In contrast, beyond the concentration, y = 0.1 the absorption edges were moved to 5.67 eV (for y = 0.125), 5.61 eV (for y = 0.15) and to 5.49 eV (for y = 0.2). This trend was explained in terms of the Burstein-Moss shift of the absorption edges.  相似文献   

11.
Molybdenum nitride Mo2Nx films were grown on MgO(0 0 1) and on α-Al2O3(0 0 1) substrates by molecular beam epitaxy under nitrogen radical irradiation. X-ray photoelectron spectroscopy revealed that the composition of the film varied in the range of Mo2N1.4-Mo2N2.8 depending on the growth temperature. The deposition at 973 K gave well-crystallized films on both substrates. The high-resolution reciprocal space mapping by X-ray diffraction showed that the nitrogen-rich γ-Mo2N crystalline phase (the composition: Mo2N1.4) was epitaxially grown on MgO at 923 K with a slight tetragonal distortion (a = 0.421 and c = 0.418 nm) to fit the MgO lattice (a = 0.421 nm). On α-Al2O3(0 0 1), nitrogen-rich γ-Mo2N (Mo2N1.8) was grown at 973 K with (1 1 1) planes parallel to the substrate surface. X-ray diffraction analysis with a multi-axes diffractometer revealed that the γ-Mo2N on α-Al2O3(0 0 1) had a slight rhombohedral distortion (a = 0.4173(2) and α = 90.46(3)°). Superconductivity was observed below 2.8-3 K for the films grown at 973 K on MgO and on α-Al2O3(0 0 1).  相似文献   

12.
CaTiO3:Pr3+ films were deposited on different substrates such as Al2O3 (0 0 0 1), Si (1 0 0), MgO (1 0 0), and fused silica using pulsed laser deposition method. The crystallinity and surface morphology of these films were investigated by XRD and SEM measurements. The films grown on the different substrates have different crystallinity and morphology. The FWHM of (2 0 0) peak are 0.18, 0.25, 0.28, and 0.30 for Al2O3 (0 0 0 1), Si (1 0 0), MgO (1 0 0), and fused silica, respectively. The grain sizes of phosphors grown on different substrates were estimated by using Scherrer's formula and the maximum crystallite size observed for the thin film grown on Al2O3 (0 0 0 1). The room temperature PL spectra exhibit only the red emission peak at 613 nm radiated from the transition of (1D2 → 3H4) and the maximum PL intensity for the films grown on the Al2O3 (0 0 0 1) is 1.1, 1.4, and 3.7 times higher than that of the CaTiO3:Pr3+ films grown on MgO (1 0 0), Si (1 0 0), and fused Sillica substrates, respectively. The crystallinity, surface morphology and luminescence spectra of thin-film phosphors were highly dependent on substrates.  相似文献   

13.
Modified substrates with nanometer scale smooth surface were obtained via coating a layer of CaO-Al2O3-SiO2 (CaAlSi) high temperature glaze with proper additives on the rough-95% Al2O3 ceramics substrates. (Ba0.6Sr0.4)TiO3 (BST) thin films were deposited on modified Al2O3 substrates by radio-frequency magnetron sputtering. The microstructure, dielectric, and insulating properties of BST thin films grown on glazed-Al2O3 substrates were investigated by X-ray diffraction (XRD), atomic force microscope (AFM), and dielectric properties measurement. These results showed that microstructure and dielectric properties of BST thin films grown on glazed-Al2O3 substrates were almost consistent with that of BST thin films grown on LaAlO3 (1 0 0) single-crystal substrates. Thus, the expensive single-crystal substrates may be substituted by extremely cheap glazed-Al2O3 substrates.  相似文献   

14.
The thermomagnetic behaviour (within the temperature range 553-300 K) for the bulk composite Nd60Fe30Al10 alloy is described in terms of a transition from paramagnetic to superferromagnetic state at T=553 K, followed by a ferromagnetic ordering for T<473 K. For the superferromagnetic regime, the alloy thermomagnetic response was associated to a homogeneous distribution of magnetic clusters with mean magnetic moment and size of 1072 μB and 2.5 nm, respectively. For T<473 K, a pinning model of domain walls described properly the alloy coercivity dependence with temperature, from which the domain wall width and the magnetic anisotropy constant were estimated as being of ≈8 nm and ≈105 J/m3, typical values of hard magnetic phases. Results are supported by microstructural and magnetic domain observations.  相似文献   

15.
The luminescence of LaY3+ and ScY3+ and ScAl3+ centers created by lanthanum and scandium ions at Y3+ and Al3+ cation sites of YAlO3 perovskite lattice was investigated. The features of emission of excitons localized at the mentioned centers in YAlO3:La and YAlO3:Sc single-crystalline films were analyzed by means of time-resolved emission spectroscopy and luminescence decay kinetics measurements under excitation by synchrotron radiation at 9 and 300 K.  相似文献   

16.
Thin films of (111)-oriented spinel ferrite Al0.5Fe2.5O4 have been prepared by a pulsed-laser deposition (PLD) technique on α-Al2O3 (0001) substrates. The films exhibit cluster-glass behaviors with a spin-freezing temperature, Tg, near or above room temperature. The magnetization was found to increase following light irradiation below Tg, which indicates the photoinduced melting of cluster-glass states. An analysis comparing the dynamic behavior of magnetic response to light irradiation between zero-field-cooled (ZFC) states and field-cooled (FC) states at 10 K under various light intensities, I, revealed that the direct photoexcitation of spins occurs when I≤0.78 mW/mm2, while the thermal heating effect following the light absorption of the samples also contributes to the enhancement of magnetization when I≥1.22 mW/mm2. The magnetization of the films could be controlled by light irradiation even at room temperature. This suggests the possibility of utilizing these films in the development of novel magneto-optical memory devices.  相似文献   

17.
Er-Tm-codoped Al2O3 thin films with different Tm to Er concentration ratios were synthesized by cosputtering from separated Er, Tm, Si, and Al2O3 targets. The temperature dependence of photoluminescence (PL) spectra was studied. A flat and broad emission band was achieved in the 1.4-1.7 μm and the observed 1470, 1533 and 1800 nm emission bands were attributed to the transitions of Tm3+: 3H4 → 3F4, Er3+: 4I13/2 → 4I15/2 and Tm3+: 3F4 → 3H6, respectively. The temperature dependence is rather complicated. With increasing measuring temperature, the peak intensity related to Er3+ ions increases by a factor of five, while the Tm3+ PL intensity at 1800 nm decreases by one order of magnitude. This phenomenon is attributed to a complicated energy transfer (ET) processes involving both Er3+ and Tm3+ and increase of phonon-assisted ET rate with temperature as well. It should be helpful to fully understand ET processes between Er and Tm and achieve flat and broad emission band at different operating temperatures.  相似文献   

18.
At room temperature deposited Ge films (thickness < 3 nm) homogeneously wet CaF2/Si(1 1 1). The films are crystalline but exhibit granular structure. The grain size decreases with increasing film thickness. The quality of the homogeneous films is improved by annealing up to 200 °C. Ge films break up into islands if higher annealing temperatures are used as demonstrated combining spot profile analysis low energy electron diffraction (SPA-LEED) with auger electron spectroscopy (AES). Annealing up to 600 °C reduces the lateral size of the Ge islands while the surface fraction covered by Ge islands is constant. The CaF2 film is decomposed if higher annealing temperatures are used. This effect is probably due to the formation of GeFx complexes which desorb at these temperatures.  相似文献   

19.
Rather old preparation of the compounds ThCo2Ge2 and ThCo2Si2 and their magnetic study in the temperature range 100–570 K, published by Omejec and Ban [Z. Anorg. Allg. Chem. 380 (1971) 111], indicated that both compounds ordered ferrromagnetically below 100 K. In order to verify the old data, polycrystalline samples of ThCo2Ge2 and ThCo2Si2 have been prepared by arc melting and subsequent annealing, and studied by X-ray diffraction at room temperature (RT), by superconducting quantum interference device (SQUID)-magnetization and AC-susceptibility measurements at 2–320 K, and by dc-magnetization measurements in variable magnetic fields up to 120 kOe at 5, 80, and 283 K. The magnetic measurements confirm the ferromagnetic ordering in both compounds, but with totally different Curie temperatures: ≈120(20) K for ThCo2Ge2 and above 320 K for ThCo2Si2. The paramagnetic values of ThCo2Ge2 and the ordering of both compounds are discussed and compared with the old results of Omejec and Ban.  相似文献   

20.
We have measured the isotope shift between 41K and 39K in the 4s1/2 → 5p1/2 transition at 405 nm using saturation spectroscopy. Our measured isotope shift is 456.1 ± 0.8 MHz, implying a residual isotope shift (sum of specific mass shift and field shift) of −52.7 ± 0.8 MHz. We deduce a specific mass shift of −40 ± 5 MHz, which would imply that the 5p1/2 state has a considerably larger specific mass shift than the 4p1/2 state. We have in addition measured the 5p1/2 hyperfine splitting for 41K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号