首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2005,17(14):1325-1330
Interference by Cu(II) causes serious problems in the detection of As(III) using anodic stripping voltammetry at gold electrodes. The behavior of Cu(II) and As(III) were examined at both a gold macro electrode and two kinds of gold nanoparticle modified electrodes, one where gold particles are deposited on glassy carbon (GC) and the other where basal plane pyrolytic graphite (BPPG) is the substrate. The sensitivity of As(III) detection was higher on gold nanoparticle modified electrodes than those on a macro gold electrode by up to an order of magnitude. In addition, the stripping peak of As(III) was narrower and more symmetric on a gold nanoparticle‐modified GC electrode, leading to analytical data with a lower limit of detection. At a macro gold electrode, the peak currents of Cu(II) were higher than those on gold nanoparticle modified electrodes. Accordingly, through the use of gold nanoparticle modified electrodes, the effect of copper interference to the arsenic detection can be reduced.  相似文献   

2.
Copper ion has been reported to be a major interference in the electrochemical detection of arsenic (III) ion in water. Therefore the development of a simple approach to alleviate this interference challenge is important. We present the use of ammonia solution as a masking agent for Cu(II) interference in the square wave anodic stripping voltammetry of As(III) on a gold nanoparticle modified glassy carbon electrode (GCE). AuNPs were electrochemically deposited by cyclic voltammetry on a GCE from a potential range of − 400 mV to 1100 mV for 10 cycles. Square wave anodic stripping voltammetry (SWASV) was used to detect As(III) in water with and without Cu(II) based on the following optimised conditions: pH = 3, deposition potential =  600 mV, and deposition time = 60 s. Ammonia solution was added to the analyte solution and the effect on mitigating copper interference was studied. The presence of ammonia complexed the Cu(II) ion thereby excluding Cu(II) from interfering with the As(III) signal.  相似文献   

3.
《Analytical letters》2012,45(10):1184-1196
The electrochemical detection of As(III) was investigated on the novel citrate stabilized gold nanoparticle modified glassy carbon electrode (AuNPs/GCE) in 1 M HCl by square wave anodic stripping voltammetry. AuNPs/GCE was prepared by simply casting citrate stabilized gold nanoparticles onto the well-polished glassy carbon electrode. Gold modification was evaluated by cyclic voltammetry, while transmission electron microscopy and UV-vis Spectroscopy revealed the size and distribution of gold nanoparticles. Anodic stripping voltammetry was performed with the modified electrode in As(III) solution. Electrochemical experiments proved that AuNPS/GCE exhibited good performance for As(III) analysis, the linear range were obtained between 0.05 and 1 ppb for trace level of As(III) as well as 1 to 15 ppb, with a limit of detection of 0.025 ppb. In terms of reproducibility, the precision of the aforementioned method in %RSD was calculated at 7.78% (n = 10), and the repeatability of the proposed method was calculated to be 1.59%. The application of the method to analyze As(III) in tap water was investigated.  相似文献   

4.
Gold nanoparticle modified indium tin oxide (ITO) film coated glass electrodes were prepared for the first time through direct electrochemical deposition from 0.5 M H2SO4 containing 0.1 mM HAuCl4. The resulting electrode surfaces were characterized with AFM. Cyclic voltammetry and linear sweep voltammetry (LSV) of arsenic(III) on the modified electrodes were performed. After optimization, a LOD of 5 +/- 0.2 ppb was obtained with 60 s deposition at -0.6 V (vs. SCE) in 1 M HNO3 using LSV.  相似文献   

5.
Electrochemistry and ultrafiltration membrane methods (electro‐oxidation and liquid phase polymer based retention technique LPR, respectively) were coupled to remove As(III) inorganic species from aqueous solutions. Our main objective was to achieve an efficient extraction of arsenic species by associating a polymer‐assisted liquid phase retention procedure, based on the As(V) adsorption properties of cationic water‐soluble polymers, with the electrocatalytic oxidation process of As(III) into its more easily removable analog As(V). The exhaustive oxidation of As(III)–As(V) was readily performed in high yield at iridium oxide film modified carbon felt electrodes in the presence of different water‐soluble poly(quaternary ammonium) salts acting also as supporting electrolyte. The progress of the macro‐scale oxidation of As(III)–As(V) was followed using iridium oxide film modified glassy carbon electrodes. Finally, a study on arsenic retention by LPR‐technique performed on fully oxidized solutions of arsenic, showing that complete (100%) retention of the arsenic could be achieved using a 20:1 polyammonium:As(III) mole ratio. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The simple, fast and highly sensitive anodic stripping voltammetric detection of As(III) at a gold (Au) nanoparticle‐modified glassy carbon (GC) (nano‐Au/GC) electrode in HCl solution was extensively studied. The Au nanoparticles were electrodeposited onto GC electrode using chronocoulometric technique via a potential step from 1.1 to 0 V vs. Ag|AgCl|NaCl (sat.) in 0.5 M H2SO4 containing Na[AuCl4] in the presence of KI, KBr, Na2S and cysteine additives. Surfaces of the resulting nano‐Au/GC electrodes were characterized with cyclic voltammetry. The performances of the nano‐Au/GC electrodes, which were prepared using different concentrations of Na[AuCl4] (0.05–0.5 mM) and KI additive (0.01–1.0 mM) at various deposition times (10–30 s), for the voltammetric detection of As(III) were examined. After the optimization, a high sensitivity of 0.32 mA cm?2 μM?1 and detection limit of 0.024 μM (1.8 ppb) were obtained using linear sweep voltammetry.  相似文献   

7.
The anodic stripping voltammetry at a carbon paste electrode modified with thiol terminated self-assembled monolayer on mesoporous silica (SH-SAMMS) provides a new sensor for simultaneous detection of lead (Pb2+) and mercury (Hg2+) in aqueous solutions. The overall analysis involved a two-step procedure: an accumulation step at open circuit, followed by medium exchange to a pure electrolyte solution for the stripping analysis. Factors affecting the performance of the SH-SAMMS modified electrodes were investigated, including electrode activation and regeneration, electrode composition, preconcentration time, electrolysis time, and composition of electrolysis and stripping media. The most sensitive and reliable electrode contained 20% SH-SAMMS and 80% carbon paste. The optimal operating conditions were a sequence with a 2 min preconcentration period, then a 60 s electrolysis period of the preconcentrated species in 0.2 M nitric acid, followed by square wave anodic stripping voltammetry from -1.0 V to 0.6 V in 0.2 M nitric acid. The areas of the peak responses were linear with respect to metal ion concentrations in the ranges of 10-1500 ppb Pb2+ and 20-1600 ppb Hg2+. The detection limits for Pb2+ and Hg2+ were 0.5 ppb Pb2+ and 3 ppb Hg2+ after a 20 min preconcentration period.  相似文献   

8.
《Electroanalysis》2004,16(23):1956-1963
A simple procedure is described for the potentiometric stripping of arsenic with a wall‐jet cell by means of potentiostatic co‐deposition of gold and arsenic at a glassy‐carbon electrode and subsequent chemical stripping with Au(III). Optimum medium containing 160 mg L?1 of Au(III) in HCl 0.1 M, where it is possible to speciate As(III) and As(V). As(V) was electrodeposited directly without prior chemical reduction at working electrode. As(III) was first determined at an electrodeposition potential of ?0.1 V. Afterwards, total arsenic was determined by an electrodeposition potential of ?0.7 V, from the area of peak obtained of the differential stripping potentiogram by using the standard addition method. The original As(V) concentration in the sample was calculated by difference. The possibilities of the optimized method were demonstrated by determinations of As(III), As(V) and total arsenic in samples of polluted water.  相似文献   

9.
《Electroanalysis》2003,15(17):1410-1414
A special type of metal side disk rotating electrode has been demonstrated for the direct estimation of total arsenic [As(III) and As(V)] at low ppb (μg/L) level using anodic stripping differential pulse voltammetry (ASDPV). A conventional three electrodes cell is used equipped with side disk rotating gold electrode as working, graphite/platinum electrode as auxiliary and Ag/AgCl/3M KCl as reference electrodes. Arsenic is estimated in various acidified samples without any digestion, containing a trace amount of copper at low ppb level. The major problems associated with ASDPV of high acidic condition (acid hazards), irreproducible results due to the interference of hydrogen bubbles, evolved at the cathode during the deposition of arsenic in acidified samples and poor detection level are overcome with the help of the specially designed gold side disk rotating electrode and modified electrolyte. The presence of a trace amount of copper(II) salt in the electrolyte is found to enhance the sensitivity of the technique. The shape and position of the metal disk at the electrode, rotation speed of the electrode and electrolyte are optimized to have less hydrogen gas bubbles interference and high reproducibility in the detection of arsenic up to 2 ppb±15% level in various samples. The electrode has been found very stable and reproducible even for more than 200 estimations.  相似文献   

10.
A simple, rapid fabricated and sensitive modified electrode for detection of As(III) in alkaline media was proposed. The modified electrode was prepared by co‐electrodeposition of manganese oxides (MnOx) and gold nanoparticles (AuNPs) on the glassy carbon electrode (GCE) with cyclic voltammetry. Linear sweep anodic stripping voltammetry (LS‐ASV) was employed for the determination of arsenic (III) without interference from Cu(II), Hg(II), and other coexisting metal ions. A lower detection limit of 0.057 µg L?1 (S/N=3) were obtained with a accumulation time of 200 s. The proposed method was successfully applied to determine arsenic (III) in real water samples with satisfactory recoveries.  相似文献   

11.
A simple, fast and quantitative method was developed for the determination of As(III) and total inorganic arsenic (As (total)) in natural spring and mineral waters using square wave cathodic stripping voltammetry (SWCSV) at a hanging mercury drop electrode (HMDE). In the determination of As(III), pre-concentration was carried out on the electrode from a solution of 1 mol/l HCl in the presence of 45 ppm of Cu(II) at a potential of −0.39 V versus Ag/AgCl, and the deposited intermetallic compound was reduced at a potential of about −0.82 V versus Ag/AgCl. In the determination of As (total) the pre-concentration was carried out in 1 mol/l HCl in the presence of 400 ppm of Cu(II) at a potential of −0.40 V versus Ag/AgCl, and the intermetallic compound deposited was reduced at a potential of about −0.76 V versus Ag/AgCl. For determination of As(III) the quantification limit was 0.2 ppb for a deposition time of 40 s, and the relative standard deviation (R.S.D.) was calculated to be 6% (n=13) for a solution with 8 ppb of As(III). For As (total), the quantification limit was 2 ppb for a deposition time of 3 min, and the R.S.D. was calculated to be 3% (n=10) for a solution with 8 ppb of As(V). The method was validated by application of recovery and duplicate tests in the measurements of As(III) and As (total) in natural spring and mineral waters. For As (total), the results of the SWCSV method were compared with the results obtained by optical emission spectrometry with ICP coupled to hydride generation (OES-ICP-HG) good correlation being observed.  相似文献   

12.
In this work, we present the application of an exfoliated graphite electrode modified with gold nanoparticles (AuNPs) for the detection of As(III) in acidic media. Gold nanoparticles were deposited on the surface of an exfoliated graphite electrode by electrodeposition at a potential window of ?0.2 V to 1.2 V. This was followed by activation in 0.5 M H2SO4 with 10 cycles from 0.6 V to 1.4 V. The modification of exfoliated graphite (EG) showed an increased electroactive surface area of the electrode and improved peak current output in a Fe(CN)63?/4? redox probe. EG‐AuNPs electrode was used to detect As(III) in 1.0 M HNO3 using square wave anodic stripping voltammetry (SWASV) technique at optimum conditions of pH 3, deposition potential of ?0.8 V, deposition time of 180 s, frequency of 5 Hz and pulse amplitude of 50 mV. The EG‐AuNPs electrode detected As(III) in solution to a limit of 0.58 ppb with regression of 0.9993. The method reported is simple, cheap and possesses good reproducibility. The developed electrochemical sensor was applied in the detection of As (III) in an industrial real water sample. The results of the real water sample analysis from the developed method are comparable with the inductively coupled plasma – optical emission spectroscopy (ICP‐OES) results.  相似文献   

13.
Yang HY  Chen WY  Sun IW 《Talanta》1999,50(5):977-984
A Tosflex-mercury film electrode (TMFE) was prepared by spin-coating a solution of the perfluorinated anion exchange polymer Tosflex onto a glassy carbon electrode surface followed by electrodeposition of mercury film on this electrode. This electrode was used for the determination of trace bismuth(III) which was preconcentrated onto the TMFE as anionic bismuth(III) complexes with chloride in a chloride medium. The preconcentration was carried out at a potential of-0.2 V, and the preconcentration of the bismuth(III) was enhanced significantly by the anion-exchange feature of Tosflex. The accumulated bismuth(III) was then determined by anodic square-wave stripping voltammetry (SWSV). Various parameters influencing the determination of bismuth(III) were examined in detail. With 2 min accumulation, the analytical signal versus concentration dependence was linear up to 50 ppb, and the detection limit was 0.58 ppb. This modified electrode showed good resistance to the interferences from surface-active compounds and common ions.  相似文献   

14.
《Electroanalysis》2017,29(10):2332-2339
A portable sensor based on a microband design for arsenic detection in drinking water is presented. The work was focused to minimize interference encountered with a standard screen‐printed electrodes featuring an onboard gold working electrode, carbon counter and silver−silver chloride pseudo‐reference electrodes as composite coatings on plastic surface. The interference effect was identified as chloride ions interacting with the silver surface of the reference electrode and formation of soluble silver chloride complexes such as AgCl43−. By modification of the reference electrodes with Nafion membrane (5 % in alcohols), the interference was entirely eliminated. However, membrane coverage and uniformity can impact the electrodes reproducibility and performance. Hence, the sensor design was further considered and a microband format was produced lending favorable diffusive to capacitive current characteristics. Using the microband electrodes allowed As(III) detection with limit of detection of 0.8 ppb (in 4 M HCl electrolyte), inherently avoiding the problems of electrode fouling and maximizing analyte signal in river water samples. This is below the World Health Organization limit of 10 μg L−1 (ppb). The electrolyte system was chosen so as to avoid problems from other common metal ions, most notably Cu(II). The presented electrode system is cost effective and offers a viable alternative to the colorimetric test kits presently employed for arsenic analysis in drinking water.  相似文献   

15.
Sun YC  Mierzwa J  Yang MH 《Talanta》1997,44(8):1379-1387
A new method of efficient rotating gold-film glassy-carbon electrode preparation prior to the determination of As(III) and As(V) in seawater by anodic stripping voltammetry (ASV) is described. Factors affecting sensitivity and precision including pH, deposition time and potential, rotation and scan rate, and the nature of working electrode were investigated. Electroinactive As(V) was reduced to As(III) by gaseous SO(2) prior to ASV determination. For a deposition time of 4 min the determination limit was approximately 0.19 ppb. Precision of the proposed method was very good (RSD=2-0.6% at 1-5 ppb) and a relatively good accuracy determined by analysis of certified reference seawater (CASS-1) and seawater samples spiked with an arsenic standard solution, was also obtained.  相似文献   

16.
A new stripping method for the determination of arsenic in water samples with a gold film-plated carbon paste electrode has been developed for the use in constant current stripping analysis (CCSA). In the novelized procedure, differentiation between As(III) and chemically pre-reduced As(V), the effect of Cu(II) on the response of arsenic, and the stability of sample solutions were studied in detail. Compared to the voltammetric approach, the method utilizing CCSA offers a more rapid procedure with improved analytical characteristics such as reproducibility, selectivity over the Cu(II) ions, or lower detection limit (3 ppb for As(III) and 0.5 ppb for As(V), respectively). The possibilities of the optimized method are demonstrated by determinations of As(III), As(V), and total arsenic in samples of polluted river water.  相似文献   

17.
《Electroanalysis》2018,30(5):928-936
Ceria cubes decorated with manganese oxide nanoparticles (Mn2O3/CeO2 nanocubes) were synthesized and used to modify a Au electrode for analysis of As(III) in aqueous solution. This modified electrode displayed improved sensitivity than either oxide on their own, indicating a synergistic effect due to the effect of Mn2O3 on the properties of CeO2. The improved sensitivity could be ascribed to the enhanced As (III) adsorption ability of Mn2O3/CeO2 nanocube during electrochemical pre‐concentration, combined with the well known As(III) sensing qualities of the gold substrate. The Mn2O3/CeO2 nanocube modified gold electrode behaved as a promising sensor with stable, repeatable square wave anodic stripping voltammetry (SWASV) peaks, separated from common interfering ions in natural water including Cu (II) under practical conditions. Repeatability and stability studies revealed the As (III) sensor to be robust and reliable, with a sensitivity of 0.0414 μA/ppb and a limit of detection (LoD) of 3.35 ppb under optimized conditions, indicating a possible general use of this class of heteronanostructures in electroanalytical chemistry for studies that rely upon adsorption of deposition of the analyte prior to stripping analysis.  相似文献   

18.
Glassy carbon electrodes (GCE) and carbon paste electrodes (CPE) were modified with imidazole functionalized polyaniline with the aim to develop a sensor for lead (II) in both acidic and basic aqueous solution. The electrodes were characterized by cyclic voltammetry and differential pulse adsorptive stripping voltammetry. The limit of detections obtained with glassy carbon electrode and carbon paste electrode are 20?ng?mL-1 and 2?ng?mL-1 of lead ion, respectively. An interference study was carried out with Cd(II), As(III), Hg(II) and Co(II) ions. Cd(II) ions interfere significantly (peak overlap) and As(III) has a depressing effect on the lead signal. The influence of pH was investigated indicating that bare and modified GCE and CPE show optimum response at pH?4.0 ± 0.05.
Figure
Imidazole functionalized polyaniline modified glassy carbon and carbon paste electrodes were used for lead ion detection by using CV and DPASV techniques. The lower detection limit observed with GCE and CPE are 20?ng mL-1 and 2?ng mL-1.  相似文献   

19.
In this work, a new sensor is proposed for the stripping voltammetric determination (anodic stripping voltammetry—ASV) of total arsenic(V) or arsenic(III). The sensor is based on an Fe-modified carbon composite electrode containing 30 % carbon black–high-pressure polyethylene (CB/PE). The modification with iron is achieved by the addition of Fe(III) or Fe(II) ions to the sample solution and co-electrodeposition of iron and arsenic on the CB/PE electrode. In anodic stripping voltammetry, two peaks are observed: an Fe peak at ?0.45 or ?0.29 V and a peak at 0.12?±?0.07 V which depends on the arsenic concentration and corresponds to the As(0) → As(III) oxidation, as is the case with other solid electrodes. The optimum conditions proposed for ASV determination of As(V) and As(III) in solutions in the presence of dissolved oxygen are the following: the background electrolyte is 0.005 M HCl containing 0.5–1 mg/?L Fe(III) for As(V) and containing 1.0–1.5 mg/?L Fe(III) for As(III), respectively; E dep?=??2.3 V; rest period at ?0.10 V for 3–5 s before the potential sweep from ?0.2 to +0.4 V; scan rate is 120 mV/?s. The detection limit (LOD, t?=?120 s) for As(III) and As(V) is 0.16 and 0.8 μg/?L, respectively. Various hypotheses on the effect of Fe ions and atoms on the electrodeposition and dissolution of arsenic are considered. The new method of determination of As(III) and As(V) differs from known analogues by its simplicity, low cost, and easy accessibility of the electrode material. It allows the voltammetric determination of total arsenic after chemical reduction of all its forms to As(III) or after their oxidation to As(V).  相似文献   

20.
A novel sensor based on carbon black‐gold nanoparticle nanocomposite modified screen‐printed electrode (CB‐AuNPs/SPE) for the detection of As(III) has been developed. The sensor was prepared modifying the SPE with CB and AuNPs by a drop casting automatable deposition. The As(III) was detected by CB‐AuNPs/SPE using anodic stripping voltammetry, with a high sensitivity (673±6 µA µM?1 cm?2) and reaching a LOD of 0.4 ppb. Finally, CB‐AuNPs/SPE has been applied to As(III) trace analysis in drinking water, obtaining satisfactory recovery values (99±9 %).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号