首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 737 毫秒
1.
The singularities of the boundary layer equations and the laminar viscous gas flow structure in the vicinity of the convergence plane on sharp conical bodies at incidence are analyzed. In the outer part of the boundary layer the singularities are obtained in explicit form. It is shown that in the vicinity of a singularity a boundary domain, in which the flow is governed by the shortened Navier-Stokes equations, is formed; their regular solutions are obtained. The viscous-inviscid interaction effect predominates in a region whose extent is of the order of the square root of the boundary layer thickness, in which the flow is described by a two-layer model, namely, the Euler equations in the slender-body approximation for the outer region and the three-dimensional boundary layer equations; the pressure is determined from the interaction conditions. On the basis of an analysis of the solutions for the outer part of the boundary layer it is shown that interaction leads to attenuation of the singularities and the dependence of the nature of the flow on the longitudinal coordinate, but does not make it possible to eliminate the singularities completely.  相似文献   

2.
A study is made of the flow of a compressible gas in a laminar boundary layer on swept-back wings of infinite span in a supersonic gas flow at different angles of attack. The surface is assumed to be either impermeable or that gas is blown or sucked through it. For this flow and an axisymmetric flow an analytic solution to the problem is obtained in the first approximation of an integral method of successive approximation. For large values of the blowing or suction parameters, asymptotic solutions are found for the boundary layer equations. Some results of numerical solution of the problem obtained by the finite-difference method are given for wings of various shapes in a wide range of angles characterizing the amount by which the wings are swept back and also the blowing or suction parameters. A numerical solution is obtained for the equations of the three-dimensional mixing layer formed in the case of strong blowing of gas from the surface of the body. The analytic and numerical solutions are compared and the regions of applicability of the analytic expressions are estimated. On the basis of the solutions obtained in the present paper and studies of other authors a formula is proposed for the calculation of the heat fluxes to a perfectly catalytic surface of swept-back wings in a supersonic flow of dissociated and ionized air at different angles of attack. Flow over swept-back wings at zero angle of attack has been considered earlier (see, for example, [1–4]) in the theory of a laminar boundary layer. In [5], a study was made of flow over swept-back wings at nonzero angle of attack at small and moderate Reynolds numbers in the framework of the theory of a hypersonic viscous shock layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 27–39, May–June, 1980.We thank G. A. Tirskii for a helpful discussion of the results.  相似文献   

3.
We consider the Prandtl laminar boundary layer which occurs with stationary flow about a blunted cone at an angle of attack. The solution of the Prandtl equations is sought using a finite difference method. It is found that a smooth solution of the problem exists only in the vicinity of the rounded nose of the body, while far from the nose the solutions acquire a singularity; in the problem symmetry plane (on the downwind side) there is a discontinuity of the first derivatives of the velocity components and the density. In the study of the Prandtl boundary layer in the problem of stationary flow about a pointed cone at an angle of attack, it has been shown [1] that the self-similar solution (dependent on two independent variables) of the Prandtl equations has a discontinuity of the first derivatives in the problem symmetry plane (on the downwind side of the cone). The suggestion has been made that in the three-dimensional problem of flow about a blunt cone at an angle of attack the solutions of the Prandtl equations may also be discontinuous. The present study was carried out to clarify the nature of the behavior of the solutions of the three-dimensional Prandtl equations. To this end we considered stationary supersonic flow of an ideal gas past a blunted cone. The results of this study (as well as those of [1]) were obtained using a numerical, finite-difference method. However, an analysis of the numerical results (investigation of the scheme stability, reduction of step size, etc.) shows that the properties of the solutions of the finite-difference equations are not in this case a result of numerical effects, but reflect the behavior of the solutions of the differential equations. The mathematical problem on the boundary layer which is considered in this study will be formulated in §2; this formulation is due to K. N. Babenko.  相似文献   

4.
Flow and heat transfer problems associated with three-dimensional compressible gas flow past a body of complex shape at a small angle of attack are investigated on the basis of a finite-difference calculation. The results of a numerical solution of the equations of the three-dimensional turbulent boundary layer are presented. The effect of the leading parameters on three-dimensional flow development and heat transfer is analyzed. The characteristic flow regions in the boundary layer are found: lines of divergence and convergence on the surface, separation zones and flow interfaces. The location of the maximum values of the heat flux and friction on the surface is determined, the behavior of the limiting streamlines on the body is described, and the intensity of the secondary flows in the boundary layer is estimated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 25–35, September–October, 1986.  相似文献   

5.
Analytical and numerical methods are used to investigate a three-dimensional laminar boundary layer near symmetry planes of blunt bodies in supersonic gas flows. In the first approximation of an integral method of successive approximation an analytic solution to the problem is obtained that is valid for an impermeable surface, for small values of the blowing parameter, and arbitrary values of the suction parameter. An asymptotic solution is obtained for large values of the blowing or suction parameters in the case when the velocity vector of the blown gas makes an acute angle with the velocity vector of the external flow on the surface of the body. Some results are given of the numerical solution of the problem for bodies of different shapes and a wide range of angles of attack and blowing and suction parameters. The analytic and numerical solutions are compared and the region of applicability of the analytic expressions is estimated. On the basis of the solutions obtained in the present work and that of other authors, a formula is proposed for calculating the heat fluxes to a perfectly catalytic surface at a symmetry plane of blunt bodies in a supersonic flow of dissociated and ionized air at different angles of attack. Flow near symmetry planes on an impermeable surface or for weak blowing was considered earlier in the framework of the theory of a laminar boundary layer in [1–4]. An asymptotic solution to the equations of a three-dimensional boundary layer in the case of strong normal blowing or suction is given in [5, 6].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 37–48, September–October, 1980.  相似文献   

6.
In this paper, the effect of several axisymmetric elastic singularities (i.e., point forces, double forces, sum of two double forces and centers of dilatation) on the elastic response of a multilayered solid is investigated. The boundary conditions in an infinite solid at the plane passing through the singularity are derived first using Papkovich–Neuber harmonic functions. Then, a Green’s function solution for multilayered solids is obtained by solving a set of simultaneous linear algebraic equations using both the boundary conditions for the singularity and the layer interfaces. Finally, the elastic solutions in a single layer on an infinite substrate due to point defects and infinitesimal prismatic dislocation loops are presented to illustrate the application of these Green’s function solutions.  相似文献   

7.
Self-similar solutions are obtained in [1, 2] to the Navier-Stokes equations in gaps with completely porous boundaries and with Reynolds number tending to infinity. Approximate asymptotic solutions are also known for the Navier-Stokes equations for plane and annular gaps in the neighborhood of the line of spreading of the flow [3, 4]. A number of authors [5–8] have discovered and studied the effect of increase in the stability of a laminar flow regime in channels of the type considered and a significant increase in the Reynolds number of the transition from the laminar regime to the turbulent in comparison with the flow in a pipe with impermeable walls. In the present study a numerical solution is given to the system of Navier-Stokes equations for plane and annular gaps with a single porous boundary in the neighborhood of the line of spreading of the flow on a section in which the values of the local Reynolds number definitely do not exceed the critical values [5–8]. Generalized dependences are obtained for the coefficients of friction and heat transfer on the impermeable boundary. A comparison is made between the solutions so obtained and the exact solutions to the boundary layer equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 21–24, January–February, 1987.  相似文献   

8.
The conditions of nonsymmetric trailing edge flow with separation are investigated. Solutions of the equations for the interaction zone in the neighborhood of the trailing edge of a thin profile at an angle of attack of the order O(Re–1/16) in the separated flow regime are constructed numerically. It is shown that for this zone a solution exists up to a certain angle of attack. In all the regimes the value of the friction on the upper surface at the very end of the trailing edge remains a positive quantity. The solution of the equations in the separated flow regimes is found to be nonunique. The flow over the leading edge is assumed to be unseparated, and the separation at the trailing edge, if present, is assumed to be localized in the interior of the boundary layer. The flow over a Kutta profile at zero angle of attack is taken as an example. In this case the satisfaction of the Chaplygin-Joukowsky condition at the trailing edge ensures smooth flow over both the trailing and leading edges.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 55–59, July–August, 1989.  相似文献   

9.
The problem of the propagation of a three-dimensional jet of viscid incompressible fluid flowing from a narrow curved slot into a fluid-filled space along a rigid plane is considered within the framework of the equations of a steady laminar boundary layer. A class of initial conditions at the slot outlet which generates in the jet a velocity field without secondary flows is identified. Within this class the boundaryvalue problem for the three-dimensional boundary layer can be divided into two problems of lower dimensionality: a dynamic and a kinematic problem. As a result of the analysis of the kinematic problem the general structure of the regions of existence and uniqueness of the solution is determined. An investigation of the dynamic problem shows that as the boundaries of the region of existence are approached a singularity characterized by an infinite increase in the thickness of the jet is formed in the solution of the boundary layer equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 75–81, July–August, 1991.  相似文献   

10.
The boundary layer in the vicinity of the zero skin-friction point on the leeward symmetry line of a prolate spheroid placed at an angle of attack is considered. The existence of this flow was established by Cebeci et al. (1980) for an angle of attack =40°. The current study is based on the results of Brown (1985) who described the marginal separation in the symmetry plane for a zero skin-friction point and on the results of Zametaev (1989) who included the spatial extension of Brown's solution but without interaction between the boundary layer and the outer flow. It is found that the three-dimensional boundary-layer equations in the vicinity of the zero skin-friction point are reduced to a single nonlinear partial differential equation of hyperbolic type which governs the longitudinal skin-friction component. Smooth solutions of this equation may be found which contain separation lines as well as double-valued regions. It is likely that the latter regions are related to the tip of the separation line obtained as a result of calculations of the full boundary-layer equations. The influence of interaction is also considered, in which case the flow is governed by a partial integro-differential equation. Numerical solutions are given for each of these problems.This study was supported by the United Technologies Research Center  相似文献   

11.
The investigation of three-dimensional flows in boundary layers is important to determine the aerodynamic characteristics of wings such as the heat fluxes and friction drag. However, the circumstance that interaction of the boundary layer and the wake with an inviscid stream can play a governing role for the formation of the flow diagram as a whole is more important. The three-dimensional flow on a thin delta wing in a hypersonic stream is investigated in this paper. An important singularity of hypersonic flow is the low value of the gas density in the boundary layer as compared with the density on its outer boundary. It is shown that in the general case when the pressure in the wing span direction varies mainly by an order, high transverse velocities originate because of the smallness of the density within the boundary layer. This circumstance permits expansion of the solution for smallspan wings in a series in an appropriate small parameter. The equations in each approximation depend on two variables, while the third—longitudinal—variable enters as a parameter. The zero approximation can be considered as the formulation of the law of transverse plane sections for a three-dimensional boundary layer. As a comparison with the exact solutions calculated for delta wings with power-law distributions of the wing thickness has shown, the first approximation yields a very good approximation. Furthermore, flow modes with a different direction of parabolicity on the whole wing, as well as zones in which interaction with the external stream should absolutely be taken into account, are found.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 75–84, March–April, 1976.  相似文献   

12.
We consider the problem of laminar gas motion in the boundary layer on a solid of revolution oriented at an angle of attack. The parametric method of L. G. Loitsyanskii is used for the solution. The effect of the external current and the form of the body are considered by introduction of three series of parameters. A corresponding system of universal equations is obtained, which is then numerically integrated over a wide range of parameters and their combinations. The results permit evaluation of the general principles of flow in a boundary layer on a solid of revolution in an oblique gas flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 32–41, July–August, 1973.  相似文献   

13.
Transition in the boundary layer on a flat plate in a turbulent flow is investigated experimentally and theoretically. It is established that over a broad range of flow conditions (variation of the intensity and scale of the external turbulence, the angle of attack, the shape of the leading edge, etc.) transition takes place without the formation of Tollmien-Schlichting waves, and its initial stages, including the amplification of disturbances, are described by the linearized unsteady three-dimensional boundary layer equations without a pressure gradient.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 55–65, September–October, 1989.The authors are grateful to N. F. Polyakov, V. S. Kosorygin, and O. S. Ryzhov for useful discussions and to N. N. Bychkov and O. N. Konstantinovskii for assisting with the experiments.  相似文献   

14.
The steady planar sink flow through wedges of angle π/α with α≥1/2 of the upper convected Maxwell (UCM) and Oldroyd-B fluids is considered. The local asymptotic structure near the wedge apex is shown to comprise an outer core flow region together with thin elastic boundary layers at the wedge walls. A class of similarity solutions is described for the outer core flow in which the streamlines are straight lines giving stress and velocity singularities of O(r−2) and O(r−1), respectively, where r1 is the distance from the wedge apex. These solutions are matched to wall boundary layer equations which recover viscometric behaviour and are subsequently also solved using a similarity solution. The boundary layers are shown to be of thickness O(r2), their size being independent of the wedge angle. The parametric solution of this structure is determined numerically in terms of the volume flux Q and the pressure coefficient p0, both of which are assumed furnished by the flow away from the wedge apex in the r=O(1) region. The solutions as described are sufficiently general to accommodate a wide variety of external flows from the far-field r=O(1) region. Recirculating regions are implicitly assumed to be absent.  相似文献   

15.
Describing the behaviors of stress singularities correctly is essential for obtaining accurate numerical solutions of complicated problems with stress singularities. This analysis derives asymptotic solutions for functionally graded material (FGM) thin plates with geometrically induced stress singularities. The classical thin plate theory is used to establish the equilibrium equations for FGM thin plates. It is assumed that the Young’s modulus varies along the thickness and Poisson’s ratio is constant. The eigenfunction expansion method is employed to the equilibrium equations in terms of displacement components for an asymptotic analysis in the vicinity of a sharp corner. The characteristic equations for determining the stress singularity order at the corner vertex and the corresponding corner functions are explicitly given for different combinations of boundary conditions along the radial edges forming the sharp corner. The non-homogeneous elasticity properties are present only in the characteristic equations corresponding to boundary conditions involving simple support. Finally, the effects of material non-homogeneity following a power law on the stress singularity orders are thoroughly examined by showing the minimum real values of the roots of the characteristic equations varying with the material properties and vertex angle.  相似文献   

16.
A. I. Ruban 《Fluid Dynamics》1982,17(6):860-867
Numerous experiments on subsonic flow of gas past thin wing profiles (see the reviews [1, 2]) have shown that the flow near the leading edge of an airfoil is separationless only at angles of attack less than a certain critical value, which depends on the shape of the airfoil. If the angle of attack reaches the critical value, a closed region of recirculation flow of small extension is formed on the upper surface of the airfoil. Under ordinary flow conditions, the boundary layer on the leading edge of the airfoil remains laminar in the entire preseparation range of angles of attack. However, the appearance of the closed separation region is, as a rule, accompanied by transition from a laminar to a turbulent flow regime. Moreover, generation of turbulence is observed precisely in the flow separation region. The present paper is devoted to a study of the stability of the boundary layer on the leading edge of a thin airfoil in a flow of incompressible fluid. The case when the angle of attack of the airfoil relative to the oncoming flow differs little from the critical value is considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 55–63, November–December, 1982.  相似文献   

17.
The problem of plane steady vibration of an elastic wedge of arbitrary angle (less than 180 degrees) subject to harmonic normal and shearing tractions on its faces is reduced to a system of singular integral equations by the superposition of two half-plane solutions. The integral equations have kernels with Cauchy singularities of a non-translation type, except for the 90 degree wedge. The locations of these singularity lines are shown graphically as a function of wedge angle.  相似文献   

18.
Self-similar solutions of the equations of a three-dimensional laminar boundary layer are of interest from two points of view. In the first place, they can be used to construct approximate calculating methods, making it possible to analyze several variants and to consider complex flows, in which it is impossible to neglect the interaction between the boundary layer and the external flow (for example, in the region of hypersonic interaction [1–3]). In the second place, the analysis of self-similar solutions permits clarifying the effect of individual parameters on one or another characteristic of the boundary layer and representing this effect in predictable form. One of the principal characteristics of a three-dimensional boundary layer, as also of a two-dimensional, is the coefficient of regeneration of the enthalpy. The value of this coefficient is needed for determining the temperature of a thermally insulated surface, as well as for finiing the real temperature (or enthalpy) head, which determines the value of the heat flux from a heated gas to the surface of the body around which the flow takes place. The article presents the results of calculations of the coefficient of regeneration of the enthalpy for locally self-similar solutions of the equations of a three-dimensional boundary layer, forming with flow around a cylindrical thermally insulated surface at an angle. It is clarified that the dependence of the coefficient of regeneration of the enthalpy on the determining parameters is not always continuous.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 60–63, January–February, 1973.  相似文献   

19.
Three-dimensional compressible gas flow past an arbitrary model body at large angles of attack is analyzed in the framework of the boundary layer theory with allowance for heat transfer. The equations of a three-dimensional turbulent boundary layer are solved using computer codes, the data on the external inviscid flow, and the body geometry.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 55–66, May–June, 1995.  相似文献   

20.
We consider plane and cylindrical Couette flow for a two-phase medium. The motion of the medium is described by the equations obtained in [1]. Collisions between the particles are disregarded, and their motion, in addition to the inertial forces, is determined by the pressure gradient of the carrying phase and the forces of viscous interaction between the carrying phase and the particles. We obtain simple asymptotic solutions of the indicated problems for small and large values of the dimensionless determining parameters. In a number of cases the solution has the nature of a boundary layer on solid walls.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 67–73, July–August, 1978.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号