首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The photophysics of three complexes of the form Ru(bpy)3−(pypm)2+ (where bpy2,2′-bipyridine, pypm 2-(2′-pyridyl)pyrimidine and P=1, 2 or 3) was examined in H2O, propylene carbonate, CH3CN and 4:1 (v/v) C2H5OH---CH3OH; comparison was made with the well-known photophysical behavior of Ru(bpy)32+. The lifetimes of the luminescent metal-to-ligand charge transfer (MLCT) excited states were determined as a function of temperature (between −103 and 90 °C, depending on the solvent), from which were extracted the rate constants for radiative and non-radiative decay and ΔE, the energy gap between the MLCT and metal-centered (MC) excited states. The results indicate that *Ru(bpy)2(pypm)2+ decays via a higher lying MLCT state, whereas *Ru(pypm)32+ and *Ru(pypm)2(bpy)2+ decay predominantly via the MC state.  相似文献   

2.
A series of Cu(II) complexes of disubstituted 2,2′-bipyridine bearing ammonium groups [Cu(L1−4)2Br]5+ (1–4, L1 = [5,5′-(Me2NHCH2)2-bpy]2+, L2 = [5,5′-(Me3NCH2)2-bpy]2+, L3 = [4,4′-(Me2NHCH2)2-bpy]2+, L4 = [4,4′-(Me3NCH2)2-bpy]2+ and bpy = 2,2′-bipyridyl) were synthesized, of which complexes 1 and 4 were structurally characterized. Both coordination configurations of Cu(II) ions can be described as distorted trigonal bipyramid. The interaction between all complexes and CT-DNA was evaluated by thermal-denaturation experiments and CD spectroscopy. Results show that the complexes interact with CT-DNA via outside electrostatic interactions and their binding ability follows the order: 1 > 2 > 3 > 4. In the absence of any reducing agents, the cleavage of plasmid pBR322 DNA by these complexes was investigated and the hydrolysis kinetics of DNA was studied in Tris buffer (pH 7.5) at 37 °C. Obtained pseudo-Michaelis–Menten kinetic parameters: 15.0, 13.6, 2.01 and 1.69 h−1 for 1, 2, 3 and 4, respectively, indicate that complexes 1 and 2 exhibit very high DNA cleavage activities. According to their crystal data, the high nuclease activity may be attributed to the strong interaction of the metal moiety and two ammonium groups with phosphate groups of DNA.  相似文献   

3.
Reaction of potassium 3{5}-(3′,4′-dimethoxyphenyl)pyrazolide with 2-bromopyridine in diglyme at 130°C for 3 days followed by an aqueous quench, affords 1-{pyrid-2-yl}-3-{3′,4′-dimethoxyphenyl}pyrazole (L2) in 69% yield after recrystallization from hot hexanes. Complexation of [Cu(NCMe)4]BF4 by 2 molar equivalents of 1-{pyrid-2-yl}-3-{2′,5′-dimethoxyphenyl}pyrazole (L1) or L2 in MeCN at room temperature, followed by concentration and crystallisation with Et2O, gives [Cu(L)2]BF4 L = L1, L2) in good yields. Treatment of AgBF4 with L1 or L2 in MeNO2 similarly gives [Ag(L)2]BF4 L = L1, L2); reaction of AfBF4 with L2 in MeCN gives a product of stoichiometry [Ag(L2)(NCMe)]BF4. The 1H NMR spectra of the [M(L)2]BF4 complexes show peaks arising from a single coordinated environment. The single crystal X-ray structure of [Cu(L1)2]BF4 shows a tetrahedral complex cation with Cu---N = 2.011(8), 2.036(8), 2.039(8), 2.110(8) Å. The CuI centre is close to tetrahedral, the dihedral angle between the least-squares planes formed by the Cu atom and the N donor atoms of the two ligands being 88.3(3)°. Complexation of hydrated Cu(BF4)2 by L2 in MeCN at room temperature yields [Cu(L2)2](BF4)2. The cyclic voltammograms of the three AgI complexes in MeCN/0.1 M Bu4n NPF6 are suggestive of extensive ligand dissociation in this solvent.  相似文献   

4.
Binuclear complexes [{Cu(NN)(PhNHpy)}2(μ-OH)2](PF6)2, where NN=2,2′-bipyridine (bipy) or 1,10-phenanthroline (phen), have been synthesized and characterized by chemical analysis, conductance measurements and IR and electronic spectroscopy. The X-ray crystal structure of [{Cu(bipy)(PhNHpy)}2(μ-OH)2](PF6)2 shows a distorted square-planar pyramidal coordination for Cu(II), defined by two nitrogen atoms of bipy, two bridging oxygen atoms and the pyridinic nitrogen atom of the ligand. Magnetic susceptibility measurements (in the 4.8–290 K range) reveal coupling which is antiferromagnetic for the bipy complex (2J=−24.2 cm−1) and slightly ferromagnetic for the phen complex (2J=3.3 cm−1). The EPR spectra show the expected triplet signals.  相似文献   

5.
The magnetic susceptibility of 1,1′,2,2′-tetramethylcobaltocene, Co[C5H3(CH3)2]2, and 1,1′-diethylcobaltocene, Co(C5H4C2H5)2, has been studied between 0.99 and 296 K. The data are well reproduced by a calculation of the dynamic Jahn-Teller effect for the 2E1g(a1g2e2g4e1g) ground state of D5d symmetry. A suitable set of parameter values is given by ζ = 100 cm−1, δ = 150 cm−1, kJT = 0.40, κ = 0.70. The magnetism of cobaltocene, Co(C5H5)2, may be described by parameter values of comparable magnitude. The results imply a significantly larger reduction of the spin-orbit coupling parameter ζ due to covalency than of the orbital reduction factor κ.  相似文献   

6.
The complexes Zn(bipy)Cl2 and Zn(bipy)2Cl2 as well as 2,2′-bipyridyl in aqueous solution (D2O) have been examined by the NMR method. The presence of the monocationic bipy D+ form in aqueous bipyridyl solution has been found. The changes of chemical shifts of bipyridyl protons for complexes Zn(bipy)3Cl2 and Zn(bipy)Cl2 have confirmed explicitly the essential influence of diamagnetic currents on the NMR spectrum of Zn(bipy)3Cl2. The comparison of the spectra of 2,2′-bipyridyl (in CH3OH) and of Zn(bipy)Cl2 may also suggest the presence of the nonbonding metal-proton 6 interaction.  相似文献   

7.
The coordination of 1,5-bis-(1′-phenyl-3′-methyl-5′-pyrazolone-4′)-1,5-pentanedione (BPMPPD) and 2,2′-bipyridine (bipy) with lanthanide ions in water-alcohol solution has been studied. Binuclear complexes of the types : Ln2(BPMPPD)3(bipy)2·nH2O (n = 2 for Y, n = 4 for Eu, Gd, Dy, Ho, Er, Tm and Yb); Ln2(BPMPPD)3bipy·nH2O (n = 10 for La, n = 3 for Pr, Nd, Sm and Tb) were formed. The compounds were characterized by elemental analysis, molar conductance, IR, UV, 1H NMR spectroscopy, thermogravimetric analysis and fluorescence spectra.  相似文献   

8.
The template condensation of 6,6″-bis(-methylhydrazino)-2,2′: 6′,2″-terpyridines L2 and L3 with 2,6-pyridinedialdehyde may give a number of different products depending upon the metal ion which is used. In the presence of nickel(II) the products are either the nickel(II) complexes of the 18-membered ring macrocycles L4 or L5 or the free macrocycles. The metal ion acts as a transient template and is removed in a chloride ion specific demetallation. The use of dimethyltin(IV) as a template results in the formation of complexes of the ring contracted macrocycles L6 or L7.  相似文献   

9.
A new optically active ONNO-type tetradentate ligand, ethylenediamine-N,N′- di-S-isobutylacetate (SS-eniba), has been synthesized. During the preparation of diaqua cobalt(III) complexes of SS-eniba, [Co(SS-eniba)(H2O)2]+, the title ligand has coordinated stereospecifically to the cobalt(III) ion to give three isomers, Δ-s-cis, Δ-uns-cis and Λ-uns-cis, which have been isolated and characterized via electronic absorption, circular dichroism (CD), and 1H NMR spectroscopy, along with elemental analysis data. The preparation of Δ-s-cis-[Co(SS-eniba)Cl2]+ and Δ-s-cis-[Co(SS-eniba)CO3]+ are also reported.  相似文献   

10.
Mononuclear copper(II) complexes of a family of pyridylmethylamide ligands HL, HLMe, HLPh, HLMe3 and HLPh3, [HL = N-(2-pyridylmethyl)acetamide; HLMe = N-(2-pyridylmethyl)propionamide; HLPh = 2-phenyl-N-(2-pyridylmethyl)acetamide; HLMe3 = 2,2-dimethyl-N-(2-pyridylmethyl)propionamide; HLPh3 = 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide], were synthesized and characterized. The reaction of copper(II) salts with the pyridylmethylamide ligands yields complexes [Cu(HL)2(OTf)2] (1), [Cu(HLMe)2](ClO4)2 (2), [Cu(HL)2Cl]2[CuCl4] (3), [Cu(HLMe3)2(THF)](OTf)2 (4), [Cu(HLMe3)2(H2O)](ClO4)2 (5a and 5b), [Cu(HLPh3)2(H2O)](ClO4)2 (6), [Cu(HL)(2,2′-bipy)(H2O)](ClO4)2 (7), and [Cu(HLPh)(2,2′-bipy)(H2O)](ClO4)2 (8). All complexes were fully characterized, and the X-ray structures vary from four-coordinate square-planar, to five-coordinate square-pyramidal or trigonal-bipyramidal. The neutral ligands coordinate via the pyridyl N atom and carbonyl O atom in a bidentate fashion. The spectroscopic properties are typical of mononuclear copper(II) species with similar ligand sets, and are consistent their X-ray structures.  相似文献   

11.
A light-driven system consisting of tris(2,2′-bipyridine)ruthenium(II) (Ru(bpy)32+) as the photosensitizer, semicarbazide as the electron donor and molecular oxygen as the electron acceptor has been employed for hydrogen peroxide production. The efficiency of this photosystem markedly depends on pH: while the peroxide yield is almost negligible at acid, neutral or slightly alkaline pH, it reaches significant values at high hydroxide concentrations, the initial rate of H2O2 formation drastically increasing from pH 12 to pH 14. In 1 M NaOH solutions containing Ru(bpy)32+ and semicarbazide at optimum concentrations, the number of catalytic cycles (or turnover number) undergone by the ruthenium complex over the complete course of the photochemical reaction is as high as 1.1 × 104.

Spectrofluorometric and laser flash photolysis techniques were used to study the primary photochemical reactions involving the excited state of the ruthenium complex as well as the photochemically generated species Ru(bpy)33+ and Ru(bpy)3+. It is proposed that at pH 14 a sequence of reactions leading to O2 photoreduction by electrons from semicarbazide takes place, with the concomitant formation of H2O2; the excited state of Ru(bpy)32+ appears to react via oxidative quenching by oxygen rather than via reductive quenching by semicarbazide. At neutral pH, in contrast, there is no H2O2 formation owing to the fact that semicarbazide is unable to reduce (Ru(bpy)33+ to Ru(bpy)32+, although the photoexcited ruthenium complex is quenched equally by oxygen.  相似文献   


12.
A novel tetranuclear terbium(III) complex [Tb4(OH)4(pybet)6(H2O)8][Tb4(OH)4(pybet)6(H2O)7 (NO3)](ClO4)14·6H2O has been synthesized and shown by X-ray crystallography to have a cubane-like Tb43-OH)42-carboxylato-O,O′)6 core. The ligand pybet is pyridinoacetate, C5H5+N-CH2CO2. Magnetic susceptibility data were measured for this Tb4 complex in the range of 2.0–320 K and in fields of 1.0 G to 50.0 kG. It is concluded that either there is very weak antiferromagnetic exchange interaction (J = −0.015 cm−1) or there is a small crystal-field splitting of the 7F6 TbIII ground state.  相似文献   

13.
The reaction of Cp(dppe)FeI with the ligands 2,2′- and 4,4′-dithiobispyridine (S2(Py)2) give the mononuclear or binuclear complexes of the type [Cp(dppe)Fe-S2(Py)2]PF6, [Cp(dppe)Fe---SPy]PF6 or [{Cp(dppe)Fe}2-μ-SPy](PF6)2 depending on the reaction condition. Reaction of Cp(dppe)FeI with dithiobispyridines in presence of TlPF6 as halide abstractor and using CH2Cl2 as a solvent gives the complexes [Cp(dppe)Fe-4,4′-S2(Py)2)2]PF6 (1) and [CpFe(dppe)-2,2′-S2(Py)2]PF6 (2) whereas the same reaction using CH3OH as a solvent and NH4PF6 as the halide abstractor leads to the formation of the FeIII–thiolate complex [Cp(dppe)Fe-2,2′-SPy]PF6 (3) and the mixed-valence complex [Cp(dppe)FeIII-μSPy-FeII(dppe)Cp](PF6)2 (4). Magnetic and ESR measurements are in agreement with one unpaired electron delocalized between them. Mössbauer data indicate clearly the presence of two different iron sites, each one of the N-bonded and S-bonded iron atoms, with intermediate oxidation state FeII---FeIII. An electron transfer intervalence absorption was observed for this complex at 780 nm (in CH2Cl2). By applying the Hush theory the intervalence parameters were obtained; =0.028, Hab=361 cm−1 which indicate Class II Robin–Day. Estimation of the rate electron transfer affords a value kth=6.5×106 s−1. Solvent effect on the intervalence transition follow the Hush prediction for high dielectric constants solvents which permit the evaluation of the outer and inner-sphere reorganizational parameters, which were analyzed and discussed. The electronic interaction parameters compare well with those found for electron transfer in metalloproteins.  相似文献   

14.
Complexes of ethylenediamine-N,N,N′,N′-tetraacetanilide (edtan, C34H36N6O14) with cobalt(II), nickel(II) and copper(II) in the solid state and in solution are reported for the first time. Thermodynamic data (stability constant, and derived Gibbs energy, enthalpy and entropy changes)for the 1 : 1 complexation of edtan with the metal ions at 298.15 K in water-saturated butan-1-ol gave the selectivity sequence log10Ks; Ni2+, 4.56±0.02; Cu2+, 4.41±0.01; Co2+, 4.18±0.04 as found from microcalorimetric titration studies. The entropies suggested that the structure of the 1 : 1 complex with copper(II) contains fewer chelate rings than those for nickel(II) and cobalt(II) (δcS0 : Cu-21.4, Co 5.7, Ni 3.9 J mol−1K−1). Solid complexes of the metal ions with edtan and perchlorate as the counter anion were prepared. For each, a complex with a 1 : 1 metal: edtan stoichiometry with non-coordinated perchlorate was isolated. The X-ray structure of [Cu(edtan)(H2O)][ClO4]2·1.5H2O (1) revealed a six-coordinate Cu centre with edtan acting as pentadentate ligand (2N, 3O) with the coordination sphere completed by an oxygen atom from water. In striking contrast to the Cu complex, the Co centre in [Co(edtan)(H2O)][ClO4]2·H2O·0.5C2H5OH (2) is seven-coordinate with hexadentate edtan (2N, 4O) and one coordinated water molecule. There is thus an excellent confirmation of the results obtained from the microcalometric study in that edtan forms four chelate rings to Cu but five to Co in the solid state. The ability of the ligand to extract metal ions from water to the water-saturated butan-1-ol phase was assessed from distribution data as a function of the aqueous phase hydrogen ion concentration and of the ligand concentration in the organic phase. The data showed that Cu2+ is selectively extracted over a wide range of aqeous phase hydrogen ion concentrations.  相似文献   

15.
The one-pot reaction between the novel proton transfer compound (pydaH2)2+(phendc)2−, LH2, and Cu(II) afforded the compounds (pydaH)2[Cu(phendc)2]·10H2O, 1, and (pydaH)2[Cu(phendc)(phendcH)]2·5H2O, 2, where pyda=2,6-diaminopyridine, and phendcH2=1,10-phenanthroline-2,9-dicarboxylic acid. The single crystal X-ray diffraction analysis of 1 and 2 revealed that these are two novel self-assembled 3D Cu(II) complex-organo-networks, in which (pydaH)+ ions and [Cu(phendc)2]2− or complex units are held together by ion pairing, H-bonding, and π–π interactions. Magnetic measurements over the temperature range 1.8–310 K revealed no significant magnetic coupling between Cu(II) centers in 1 or 2.  相似文献   

16.
Eight mononuclear complexes of the formula [M(N-N)(DHB)] and two binuclear complexes of the formula [M2(BPY)2(THB)] where M = Pd(II) or Pt(II), N-N = 2,2′-bipyridine (BPY), 2,2′-biquinoline (BIQ), 4,7-diphenyl-1,10-phenanthroline (DPP), 1,10-phenanthroline (PHEN); DHB = dianion of 3,4-dihydroxybenzaldehyde and THB = tetraanion of 3,3′,4,4′-tetrahydroxy benzaldazine were prepared and their electrochemical, spectral and photophysical properties were examined. These complexes were characterized by chemical analysis, IR and proton NMR spectroscopy. A detailed study on the absorption spectroscopy of these complexes was made. These complexes were found to show a low-energy solvatochromic ligand-to-ligand charge-transfer (LLCT) band. The electronic energies of these bands have been analyzed and compared with electrochemical data. Emission behaviour of the complexes of the series, [Pt(N-N)(DHB)], [Pt(N-N)(DHBA)] where DHBA is the dianion of 3,4-dihydroxybenzoic acid and [Pt2(BPY)2(THB)] was also investigated. These platinum complexes were found to emit from a low-energy state at low temperature and a high-energy state at room temperature. Photophysics of these complexes is also discussed.  相似文献   

17.
The compounds (π-C5H5)(CO)2LM-X (L = CO, PR3; M = Mo, W; X = BF4, PF6, AsF6, SbF6) react with H2S, p-MeC6H4SH, Ph2S and Ph2SO(L′) to give ionic complexes [(π-C5H5)(CO)2LML′]+ X. Also sulfur-bridged complexes, [(π-C5H5)(CO)3W---SH---W(CO)3(π-C5H5)]+ AsF6 and [(π-C5H5)(CO)3M-μ-S2C=NCH2Ph-M(CO)3(π-C5H5)], have been obtained. Reactions with SO2 and CS2 have been examined.  相似文献   

18.
The dimethylphosphino substituted cyclopentadienyl precursor compounds [M(C5Me4CH2PMe2)], where M=Li+ (1), Na+ (2), or K+ (3), and [Li(C5H4CR′2PMe2)], where R′2=Me2 (4), or (CH2)5 (5), [HC5Me4CH2PMe2H]X, where X=Cl (6) or PF6 (7) and [HC5Me4CH2PMe2] (8), are described. They have been used to prepare new metallocene compounds, of which representative examples are [Fe(η-C5R4CR′2PMe2)2], where R=Me, R′=H (9); R=H and R′2=Me2 (10), or (CH2)5 (11), [Fe(η-C5H4CMe2PMe3)2]I2 (12), [Fe{η-C5Me4CH2P(O)Me2}2] (13), [Zr(η-C5R4CR′2PMe2)2Cl2], where R=H, R′=Me (14), or R=Me, R′=H (15), [Hf(η-C5H4CMe2PMe2)2]Cl2] (16), [Zr(η-C5H4CMe2PMe2)2Me2] (17), {[Zr(η-C5Me4CH2PMe2)2]Cl}{(C6F5)3BClB(C6F5)3} (18), [Zr{(η-C5Me4CH2PMe2)2Cl2}PtI2] (19), [Mn(η-C5Me4CH2PMe2)2] (20), [Mn{(η-C5Me4CH2PMe2B(C6F5)3}2] (21), [Pb(η-C5H4CMe2PMe2)2] (23), [Sn(η-C5H4CMe2PMe2)2] (24), [Pb{η-C5H4CMe2PMe2B(C6F5)3}2] (25), [Pb(η-C5H4CMe2PMe2)2PtI2] (26), [Rh(η-C5Me4CH2PMe2)(C2H4)] 29, [M(η,κP-C5Me4CH2PMe2)I2], where M=Rh (30), or Ir, (31).  相似文献   

19.
Nest-shaped cluster [MoOICu3S3(2,2′-bipy)2] (1) was synthesized by the treatment of (NH4)2MoS4, CuI, (n-Bu)4NI, and 2,2′-bipyridine (2,2′-bipy) through a solid-state reaction. It crystallizes in monoclinic space group P21/n, a=9.591(2) Å, b=14.820(3) Å, c=17.951(4) Å, β=91.98(2)°, V=2549.9(10) Å3, and Z=4. The nest-shaped cluster was obtained for the first time with a neutral skeleton containing 2,2′-bipy ligand. The non-linear optical (NLO) property of [MoOICu3S3(2,2′-bipy)2] in DMF solution was measured by using a Z-scan technique with 15 ns and 532 nm laser pulses. The cluster has large third-order NLO absorption and the third-order NLO refraction, its 2 and n2 values were calculated as 6.2×10−10 and −3.8×10−17 m2 W−1 in a 3.7×10−4 M DMF solution.  相似文献   

20.
Two mononuclear RuII complexes of polypyridyl ligands, cis-[Ru(bpy)2(4,4′-bpy)Cl](PF6)·H2O (1) and cis-[Ru(phen)2(CH3CN)2](PF6)2 (2) (bpy=2,2′-bipyridyl, 4,4′-bpy=4,4′-bipyridyl, and PHEN=1,10-phenanthroline), have been synthesized and characterized by elemental analyses, IR and UV–vis spectra. The crystal structures of both complexes have been determined by X-ray diffraction, indicating that each RuII center is hexa-coordinated (RuN5Cl for 1 and RuN6 for 2) and takes a distorted octahedral geometry. The favored feature of both complexes is that they are quite useful complex precursors for further constructing new functional architectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号