首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The hysteresis of magnetoresistance R(H) and relaxation of the remanent resistance R rem with time after magnetic field treatment of HTSC (Y-Ba-Cu-O) + CuO composites are studied. Such a composite constitutes a network of Josephson junctions wherein the nonsuperconducting component (CuO) forms Josephson barriers between HTSC grains. By comparing the experimental R rem(t) and R(H) dependences, it is shown that the relaxation of the remanent resistance is caused by the decreased magnetic field in the intergrain medium due to relaxation of magnetization. The reason is uncovered for the differences between the published values of pinning potentials determined by measuring the relaxation of magnetization or resistance and fitting them by the Anderson law.  相似文献   

2.
The hysteretic behavior of the magnetoresistance R(H) of granular high-temperature superconductors (HTSCs) of the Y-Ba-Cu-O, Bi-Ca-Sr-Cu-O, and La-Sr-Cu-O classical systems is investigated for transport current densities lower and higher than the critical density (at H = 0). All systems exhibit universal behavior of the width of the magnetoresistance hysteresis loop: independence of transport current under identical external conditions. This means that flux trapping in HTSC grains is the main mechanism controlling the hysteretic behavior of the magnetoresistance of granular HTSCs, while pinning of Josephson vortices in the intragranular medium makes no appreciable contribution to the formation of magnetoresistance hysteresis (when transport current flows through the sample). Experimental data on relaxation of residual resistance after the action of a magnetic field also confirm this conclusion.  相似文献   

3.
Composites representing a network of random Josephson junctions and characterized by the compositions 92.5 at. % Y3/4Lu1/4Ba2Cu3O7+7.5 at. % NiTiO3 and 92.5 at. % Y3/4Lu1/4Ba2Cu3O7+7.5 at.% MgTiO3 are synthesized, and their magnetoresistance properties are studied. The temperature dependence of the resistance R(T) measured for the composite that contains the paramagnetic NiTiO3 compound exhibits a characteristic feature below the superconducting transition temperature Tc of the high-Tc superconductor, namely, a region where R is independent of the current j and weakly depends on the magnetic field H. Below a certain temperature Tm, a strong dependence of R on j and H is observed, which is peculiar to a network of Josephson junctions. The dependences R(T, j, H) obtained for the “reference” samples with the nonmagnetic MgTiO3 compound exhibit no such features. The anomalous behavior of the HTSC + NiTiO3 composite is explained by the effect produced by the magnetic moments of Ni atoms in the insulating barriers on the transport current.  相似文献   

4.
To elucidate the origin of the well-known anisotropy of the magnetoresistive properties of granular high-temperature superconductors (HTSs), which is related to the mutual orientation of magnetic field H and transport current j, we investigate the hysteretic dependences of magnetoresistance R(H) of the yttrium HTS sample at the perpendicular (Hj) and parallel (H || j) configurations. The hysteretic R(H) dependences are analyzed using the concept of the effective field in the intergrain boundaries through which superconducting current carriers tunnel. The effective degree of magnetic flux compression in the intergrain medium at the perpendicular configuration was found to be twice as much as at the parallel one. This approach explains well the anisotropy of the magnetoresistive properties of granular HTSs, which was previously reported by many authors, and the temperature dependences of the resistance in the resistive transition region.  相似文献   

5.
This study aims at establishing the interrelation between the current-carrying capacity and peculiarities of magnetoresistance of granular YBa2Cu3O7 ? δ HTSCs (T c = 92.5 K). The transverse magnetoresistance of several batches of YBa2Cu3O7 ? δ HTSC samples with noticeably different values of critical supercurrent density j c is measured in magnetic fields H ext up to H ext max ≈ 500 Oe in a wide range of transport currents (5 mA ≤ I ≤ 1600 mA) at T = 77.4 K. Samples with relatively high values of j c (H ext = 0) ≥ 100 A/cm2 do not exhibit any anomalies in their field dependences. Magnetoresistance jumps δρBG-VG273K are observed for samples with low values of j c ≥ 20 A/cm2 in fields H BG-VG ≈ 200–260 Oe. The width ΔH BG-VG of the anomalous resistance region increases upon an increase in I. The magnetoresistance jumps decrease with increasing I in increasing field H ext(0 → H ext max ) and increase in decreasing field H ext(H ext max → 0). It is found that these peculiarities of the field dependences of magnetoresistance are associated with a first-order phase transition (in magnetic field) in the vortex structure of YBa2Cu3O7 ? δ HTSCs of the Bragg glass-vortex glass type.  相似文献   

6.
Temperature dependences of the resistivity ρ(T) of samples of granular high-temperature superconductor YBa2Cu3O7 – δ are measured at various transverse external magnetic fields at 0 < H ext < 1900 Оe in the temperature range from the upper Josephson critical temperature of “weak bonds” T c2J to temperatures slightly exceeding the superconducting transition temperature T c . Based on the data obtained, the behavior of the field dependences of the critical temperatures of superconducting grains and “weak bonds,” and temperature and field dependences of the magnetic contribution to the resistivity \(\left[ {\Delta \rho \left( {T,H} \right) = \rho {{\left( T \right)}_{{H_{ext}} = const}} - \rho {{\left( T \right)}_{{H_{ext}} = 0}}} \right]\). It is shown that the behavior of the magnetic contribution to the resistivity Δρ along the line of the phase transition related to the onset of the magnetic field penetration in the form of Abrikosov vortices into the subsystem of superconducting grains T c1g (H ext) is anomalous. The concepts on the magnetic flux redistribution between both subsystems of two-level HTSC near in the vicinity of T c1g : the Josephson vortex decreases, and the Abrikosov vortex density increases.  相似文献   

7.
The baric (P ≤ 5GPa) and magnetic-field (H ≤ 5 kOe) dependences of the transverse magnetore-sistance Δρ xx 0 have been measured for p-InAs (R H = 22.5 cm3/C, ρ = 0.15 Ω cm) and the new ferromag-netic semiconductor p-CdGeAs2 (R H = 5 cm3/C, ρ = 0.62 Ω cm), doped with a magnetic impurity (Mn), near the temperature T = 297 K. The dependences Δρ xx 0 (P, H) for p-InAs:Mn and p-CdGeAs2:Mn exhibit a magnetoresistive effect with an increase in pressure, and a pressure-induced magnetoresistance hysteresis is observed in p-CdGeAs2:Mn with a pressure drop.  相似文献   

8.
We report similarities and differences of the transport features in the spin density wave (SDW) and in the field-induced SDW (FISDW) phases of the quasi-one-dimensional compound (TMTSF)2PF6. As temperature decreases below ≈2 K, the resistance in both phases exhibits a maximum and a subsequent strong drop. However, the characteristic temperature of the R(T) maximum and its scaling behavior in different magnetic fields B are evidence that the nonmonotonic R(T) dependences have different origin in SDW and FISDW regions of the phase diagram. We also found that the borderline T0(B, P) which divides the FISDW region of the P-B-T phase diagram into the hysteresis and nonhysteresis domains terminates in the N=1 subphase; the borderline thus has no extension to the SDW N=0 phase.  相似文献   

9.
The transport properties (R(T) and R(H) dependences at various values of the transport current in magnetic fields up to 65 kOe) and low-temperature heat capacity in magnetic fields up to 90 kOe of the BaPb0.75Bi0.25O3 superconductor (T C ≈ 11.3 K) are investigated with the goal of clarifying the mechanisms determining the nonmonotonic behavior and hysteresis of its magnetoresistance R(H). The type of R(H) hysteretic dependences for BaPb0.75Bi0.25O3 is analogous to that observed in granular high-T c superconductors (HTSCs); however, unlike classical HTSC systems, the field width of the magnetoresistance hysteresis loop for polycrystalline BaPb0.75Bi0.25O3 depends on the transport current. This means that although the mechanisms responsible for the magnetoresistance hysteresis (the influence of the magnetic flux trapped in superconducting regions on the effective field in Josephson interlayers) are identical in these objects, the transport current in BaPb0.75Bi0.25O3 may considerably affect the diamagnetic response of the superconductor. A considerable effect of transport current on the field in which the R(H) dependences have a peak and exhibit hysterestic properties is observed. Such a behavior can be adequately interpreted using the model of the spatially inhomogeneous superconductor-insulator state proposed by Gorbatsevich et al. [JETP Lett. 52, 95 (1990)]. The nonmonotonic dependence of quantity C/T (C is the heat capacity) on the magnetic field discovered in the present study also agrees with the conclusions based on this model.  相似文献   

10.
Hysteresis of the magnetoresistance of ceramic YBa2Cu3O~6.95 HTSC samples is studied at T = 77.3 K in an external magnetic field H ext changing in 0 → H max → 0 cycles, where H max is the maximum magnitude of H ext. Information is obtained about the dependences of the critical fields of Josephson weak links H c2J , the lower critical fields of superconducting grains H c1A , and the critical fields H BG-VG of the Bragg glass-vortex glass phase transition in the vortex matter on transport current I, magnetic field, and the mutual orientation of I and H ext. It is found that the magnetoresistance δρ+273 K measured with increasing H ext is significantly higher than Δρ?273 K and that H c2J + < H c2J ? , H c1A + < H c1A ? , and H BG-VG + < H BG-VG ? .  相似文献   

11.
The first thin La1?xAgyMnO3 epitaxial films (yx) were grown on SrTiO3 (110) substrates with silver present in the ionized state (Ag+) only. The Curie temperatures TC of the compositions with x = y = 0.05, x = y = 0.1, and x = 0.3 and y = 0.27 crystallizing in the hexagonal structure \(R\bar 3c\) above or close to room temperature. The temperature dependences of electrical resistivity ρ and of magnetoresistance ¦Δρ/ρ/¦ = ¦(ρH ? ρ H = 0)/ρH=0¦ pass through maxima near TC, with the magnetoresistance being negative and reaching colossal values of ~7–20% in a magnetic field H = 8.2 kOe not only at TC but also at room temperature. The magnetic moment per formula unit as derived from the saturation magnetization at T = 5 K is substantially smaller than expected for complete ferromagnetic ordering. The magnetization in fields of up to 6 kOe depends on the actual sample cooling conditions, and the hysteresis loop of a field-cooled sample is displaced along the H axis by ΔH. The above properties can be accounted for by the fact that the films are in a two-phase magnetic (ferromagnetic-antiferromagnetic) state induced by strong s-d exchange. The maximum value of Δ H was used to calculate the energy of exchange coupling between the ferromagnetic and antiferromagnetic parts of a sample.  相似文献   

12.
13.
Generality of the spontaneous and stimulated magnetization reversal in MnSb clusters embedded in GaMnSb thin films is established. In experiments, the similarity of the thermoactivation and field magnetization reversal processes can be observed as the coincidence of the maximum in the field dependences of magnetic viscosity S(H) with the sample coercivity H C . Analysis of this experimental fact yields the relation between H C and parameters of the model describing the S(H) dependences. The obtained formula is identical to the well-known Kneller law determining the H C (T) dependence of noninteracting superparamagnetic nanoparticles.  相似文献   

14.
The obtained periodic magnetic-field dependences I c+(Φ/Φ0) and I c?(Φ/Φ0) of the critical current measured in opposite directions on asymmetric superconducting aluminum rings has made it possible to explain previously observed quantum oscillations of dc voltage as a result of alternating current rectification. It was found that a higher rectification efficiency of both single rings and ring systems is caused by hysteresis of the current-voltage characteristics. The asymmetry of current-voltage characteristics providing the rectification effect is due to the relative shifts of the magnetic dependences I c?(Φ/Φ0) = I c+(Φ/Φ0 + Δ?) of the critical current measured in opposite directions. This shift means that the position of I c+(Φ/Φ0) and I c?(Φ/Φ0) minima does not correspond to n + 0.5 magnetic flux Φ quanta, which is in direct contradiction to measured Little-Parks resistance oscillations. Despite this contradiction, the amplitude I c, an(Φ/Φ0) = I c+(Φ/Φ0) ? I c?(Φ/Φ0) of critical current anisotropy oscillations and its variations with temperature correspond to the expected amplitude of persistent current oscillations and its variations with temperature.  相似文献   

15.
Temperature m(T) and time m(t) dependences of the magnetic moment of GaMnSb thin films with MnSb clusters have been measured. The m(t) dependences are straightened in semilogarithmic coordinates m(lnt). The temperature dependences of magnetic viscosity S(T) corresponding to the slope of straight lines m(lnt) have been studied. It have been demonstrated that the behavior of dependences S(T) is governed by the lognormal distribution of the magnetic anisotropy energy of MnSb clusters. It have been found that the behavior of dependences m(T) measured after the films were cooled in zero magnetic field and in magnetic field H = 10 kOe is also governed by the lognormal distribution of the magnetic anisotropy energy of MnSb clusters.  相似文献   

16.
The magnetoresistance of ceramic YBa2Cu3O~6.5 HTSC samples is studied as a function of the mutual orientation of the current I and external magnetic field H ext at T = 77.3 K in magnetic fields of up to ~500 Oe. It is found that, if the demagnetization factor D is taken into account, the effective critical field of complete penetration of Josephson vortices into weak links H c2J eff does not depend on the mutual orientation of I and H ext. The lower critical field H c1A eff associated with the beginning of penetration of Abrikosov vortices into superconducting grains increases substantially with the angle between I and H ext. The strongest variation with the mutual orientation of I and H ext is exhibited by the critical field of the Bragg glass-vortex glass first-order phase transition H BG-VG eff and by the magnetoresistance jump at this phase transition.  相似文献   

17.
Commensurability effects have been theoretically studied in a hybrid system consisting of a Josephson junction located in a nonuniform field induced by an array of magnetic particles. A periodic phase-difference distribution in the junction that is caused by the formation of a regular lattice of Abrikosov vortices generated by the magnetic field of the particles in superconducting electrodes is calculated. The dependence of the critical current through the junction I c on the applied magnetic field H is shown to differ strongly from the conventional Fraunhofer diffraction pattern because of the periodic modulation of the Josephson phase difference created by the vortices. More specifically, the I c(H) pattern contains additional resonance peaks, whose positions and heights depend on the parameters and magnetic state of the particles in the array. These specific features of the I c(H) dependence are observed when the period of the Josephson current modulation by the field of the magnetic particles and the characteristic scale of the change in the phase difference by the applied magnetic field are commensurable. The conditions that determine the positions of the commensurability peaks are obtained, and they are found to agree well with experimental results.  相似文献   

18.
The Influence of temperature in the range from 275 to 320 K on ESR spectra and magnetization m of ensembles of spherical gadolinium nanoparticles with the diameter from 89 to 18 nm was studied. The particles with d = 18 nm had a cubic face centered structure and no magnetic transition. At T > TC all particles were paramagnetic, and their g factors were g = 1.98 ± 0.02 irrespective of their size and structure. At T = TC the particles having 28 to 89 nm in size experienced a magnetic and orientation transition; at T < TC their m(H) dependences were described by the Langevin function, and the FMR lines broadened and shifted towards H = 0. FMR lines of the Gd particle ensembles showed a hysteresis behavior during magnetization reversal, which did not correlate with the coercivity of the particles. Dependences of the Gd nanoparticles FMR linewidth ΔH(T) changed proportionally to |TTC|.  相似文献   

19.
The differential magnetic susceptibility χd(H) of YBa2Cu3O7?x polycrystalline samples is studied experimentally in fields H<150 Oe. The empirical χd(H) dependence is determined. The results are explained on the basis of the critical-state model of a Josephson medium with hypervortices.  相似文献   

20.
The effect of neutron-bombardment-induced atomic disorder on the galvanomagnetic properties of Sr2RuO4 single crystals has been experimentally studied in a broad range of temperatures (1.7–380 K) and magnetic fields (up to 13.6 T). The disorder leads to the appearance of negative temperature coefficients for both the in-plane electric resistivity (ρa) and that along the c axis (ρc), as well as the negative magnetoresistance Δρ, which is strongly anisotropic to the magnetic field orientation (Ha and Hc), with the easy magnetization direction along the c axis and a weak dependence on the probing current direction in the low-temperature region. The experimental ρa(T) and ρc(T) curves obtained for the initial and radiation-disordered samples can be described within the framework of a theoretical model with two conductivity channels. The first channel corresponds to the charge carriers with increased effective masses (~10m e , where m e is the electron mass) and predominantly electron-electron scattering, which leads to the quadratic temperature dependences of ρa and ρc. The second channel corresponds to the charge carriers with lower effective masses exhibiting magnetic scattering at low temperatures, which leads to the temperature dependence of the ρa, c(T) ∝ 1/T type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号