首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly efficient and selective catalysts for the asymmetric reduction of aryl alkyl ketones under hydrogen-transfer conditions (2-propanol) were obtained by combining a novel class of pseudo-dipeptide ligands with [[RuCl(2)(p-cymene)](2)]. A library of 36 dipeptide-like ligands was prepared from N-Boc-protected alpha-amino acids and the enantiomers of 2-amino-1-phenylethanol and 1-amino-2-propanol. The catalyst library was evaluated with the reduction of acetophenone and excellent enantioselectivity of 1-phenylethanol was obtained with several of the novel catalysts. A ligand based on the combination of N-Boc-L-alanine and (S)-1-amino-2-propanol (ligand A-(S)-4) was found to be particular effective. When the situ formed ruthenium complex of this ligand was employed as the catalyst in the hydrogen-transfer reaction of various aryl alkyl ketones, the corresponding alcohol products were achieved in excellent enantioselectivity (up to 98 % ee).  相似文献   

2.
Metal-catalyzed asymmetric transfer hydrogenation is a powerful and practical method for the reduction of ketones to produce the corresponding secondary alcohols, which are valuable building blocks in the pharmaceutical, perfume, and agrochemical industries. Hence, a series of novel chiral β-amino alcohols were synthesized by chiral amines with regioselective ring opening of (S)-propylene oxide or reaction with (S)-(+)-2-hydroxypropyl p-toluenesulfonate by a straightforward method. The chiral ruthenium catalytic systems generated from [Ru(arene)(μ-Cl)Cl]2 complexes and chiral phosphinite ligands based on amino alcohol derivatives were employed in asymmetric transfer hydrogenation of ketones to give the corresponding optically active alcohols; (2S)-1-{[(2S)-2-[(diphenylphosphanyl)oxy]propyl][(1R)-1-phenylethyl]amino}propan-2-yldiphenylphosphinitobis[dichol-oro(η6-benzene)ruthenium(II)] acts an excellent catalyst in the reduction of α-naphthyl methyl ketone, giving the corresponding alcohol with up to 99% ee. The substituents on the backbone of the ligands were found to have a remarkable effect on both the conversion and enantioselectivity of the catalysts. Furthermore, this transfer hydrogenation is characterized by low reversibility under these conditions.  相似文献   

3.
The enantioselective outcome of transfer hydrogenation reactions that are catalysed by ruthenium(II) amino alcohol complexes was studied by means of a systematically varied series of ligands. It was found that both the substituent at the 1-position in the 2-amino-1-alcohol ligand and the substituent at the amine functionality influence the enantioselectivity of the reaction to a large extent: enantioselectivities (ee values) of up to 95% were obtained for the reduction of acetophenone. The catalytic cycle of ruthenium(II) amino alcohol catalysed transfer hydrogenation was examined at the density functional theory level. The formation of a hydrogen bond between the carbonyl functionality of the substrate and the amine proton of the ligand, as well as the formation of an intramolecular H...H bond and a planar H-Ru-N-H moiety are crucially important for the reaction mechanism. The enantioselective outcome of the reaction can be illustrated with the aid of molecular modelling by the visualisation of the steric interactions between the ketone and the ligand backbone in the ruthenium(II) catalysts.  相似文献   

4.
Chiral azetidino amino alcohol ligands bearing an additional stereogenic center were readily prepared and used as catalysts for the asymmetric addition of alkynylzinc to aromatic aldehydes with enantioselectivities of up to 87% ee. The relationship between the reaction enantioselectivity and the structure of the chiral ligands was also evaluated in this reaction. The experimental results showed that the enantioselectivity level of the reaction was greatly influenced by the second stereogenic center attached to azetidine ring, but the stereochemical sense was only determined by the configuration of the azetidine ring. A possible transition structure for the catalytic asymmetric addition was also proposed.  相似文献   

5.
A library of 19 chiral tropos phosphorus ligands, based on a flexible (tropos) biphenol unit and a chiral P-bound alcohol (11 phosphites) or secondary amine (8 phosphoramidites), was synthesized. These ligands were screened, individually and as a combination of two, in the rhodium-catalyzed asymmetric hydrogenation of dehydro-alpha-amino acids, dehydro-beta-amino acids, enamides and dimethyl itaconate. ee values up to 98% were obtained for the dehydro-alpha-amino acids, by using the best combination of ligands, a phosphite [4-P(O)2O] and a phosphoramidite [13-P(O)2N]. Kinetic studies of the reactions with the single ligands and with the combination of phosphite [4-P(O)2O] and phosphoramidite [13-P(O)2N] have shown that the phosphite, despite being less enantioselective, promotes the hydrogenation of methyl 2-acetamidoacrylate and methyl 2-acetamidocinnamate faster than the mixture of the same phosphite with the phosphoramidite, while the phosphoramidite alone is much less active. In this way, the reaction was optimized by lowering the phosphite/phosphoramidite ratio (the best ratio is 0.25 equiv phosphite/1.75 equiv phosphoramidite) with a resulting improvement of the product enantiomeric excess. A simple mathematical model for a better understanding of the variation of the enantiomeric excess with the phosphite/phosphoramidite ratio is also presented.  相似文献   

6.
Asymmetric hydrogenation of acetophenone in the presence of Ru(II) catalysts coordinated by TolBINAP and a series of chiral 1,2-diamines was studied. The sense and degree of enantioselectivity were highly dependent on the N-substituents of the diamine ligands. The N-substituent effect was discussed in detail. Among these catalysts, the (S)-TolBINAP/(R)-DMAPEN-Ru(II) complex showed the highest enantioselectivity. The mode of enantioface selection was interpreted by using transition state models based on the X-ray structure of the catalyst precursor. The chiral catalyst effected the hydrogenation of alkyl aryl ketones and arylglyoxal dialkyl acetals to afford the chiral alcohol in >99% ee in the best cases. Hydrogenation of racemic benzoin methyl ether with the chiral catalyst through dynamic kinetic resolution gave the anti-alcohol (syn:anti = 3:97) in 98% ee, while the reaction of alpha-amidopropiophenones resulted in the syn-alcohols (syn:anti = 96:4 to >99:1) in >98% ee.  相似文献   

7.
A new generation of 2-aza-norbornyl amino alcohol ligands for the catalytic transfer hydrogenation reaction of aromatic ketones was synthesized. Extremely active catalysts were formed by introducing a ketal functionality at the rear end of the ligand. Acetophenone was reduced in 96% ee at low catalyst loading, substrate to catalyst ratio, S/C 5000, within 90 minutes with isopropyl alcohol as the hydrogen donor. It was found that the dioxolane substituent in the ligand increased the turnover frequency, TOF50, from 1050 h(-1) to 3000 h(-1) at an S/C ratio of 1000. Introduction of a methyl group at the carbinol carbon resulted in TOF50 as high as 8500 h(-1). Transfer hydrogenation of a range of aromatic ketones was evaluated and found to reach completion within 30 minutes at room temperature, and excellent enantioselectivity, up to 99 % ee, was obtained. A possible explanation for the enhanced activity was provided by density functional calculations, which showed that the presence of a remote dipole in the ligand lowered the transition state energy.  相似文献   

8.
Amino acid based thioamides, hydroxamic acids, and hydrazides have been evaluated as ligands in the rhodium‐catalyzed asymmetric transfer hydrogenation of ketones in 2‐propanol. Catalysts containing thioamide ligands derived from L ‐valine were found to selectively generate the product with an R configuration (95 % ee), whereas the corresponding L ‐valine‐based hydroxamic acids or hydrazides facilitated the formation of the (S)alcohols (97 and 91 % ee, respectively). The catalytic reduction was examined by performing a structure–activity correlation investigation with differently functionalized or substituted ligands and the results obtained indicate that the major difference between the thioamide and hydroxamic acid based catalysts is the coordination mode of the ligands. Kinetic experiments were performed and the rate constants for the reduction reactions were determined by using rhodium–arene catalysts derived from amino acid thioamide and hydroxamic acid ligands. The data obtained show that the thioamide‐based catalyst systems demonstrate a pseudo‐first‐order dependence on the substrate, whereas pseudo‐zero‐order dependence was observed for the hydroxamic acid containing catalysts. Furthermore, the kinetic experiments revealed that the rate‐limiting steps of the two catalytic systems differ. From the data obtained in the structure–activity correlation investigation and along with the kinetic investigation it was concluded that the enantioswitchable nature of the catalysts studied originates from different ligand coordination, which affects the rate‐limiting step of the catalytic reduction reaction.  相似文献   

9.
A series of novel diphosphite ligands derived from readily available D-(+)-glucose have been synthesized. These ligands were screened in the Rh-catalyzed hydrogenation of a series of alpha,beta-unsaturated carboxylic acid derivatives. Both excellent enantioselectivities (ee up to >99%) and activities were achieved. The advantage of these ligands is that their modular nature allows an easy systematic variation in the configuration of the stereocenters (C-3, C-5) at the ligand backbone and in the biaryl substituents, so the optimum configuration for maximum enantioselectivity in asymmetric hydrogenation can be determined. Results show that enantiomeric excesses depend strongly on the absolute configuration of C-3 and slightly on the stereocenter carbon C-5, while the sense of the enantiodiscrimination is predominantly controlled by the configuration of the biaryls at the phosphite moieties. Moreover, the presence of bulky substituents at the ortho-positions of the biaryl diphosphite moieties has a positive effect on enantioselectivity.  相似文献   

10.
The design of new chiral ligands plays a very important role in the development of transition metal catalyzed asymmetric synthesis. Many chiral diphosphine ligands have been prepared and applied in asymmetric catalytic reactions with excellent enantioselectivities. Among the chiral diphosphine ligands reported, BINAP was found to have been the widest application in the transition metal catalyzed reaction. Recently we have developed a novel oxovanadium (Ⅳ) complex catalyst for the oxidative …  相似文献   

11.
A series of l ‐amino acid‐modified benzimidazoles have been synthesized and their application in Ru‐catalysed asymmetric transfer hydrogenation (ATH) of ketones has been evaluated using i‐propanol as hydrogen donor as well as solvent. The enantioselectivity of the product was sensitive to the reaction conditions and showed reversed temperature effect. Better reaction activity and enantioselectivity were obtained at higher reaction temperature and higher molar ratio of substrate to catalyst (S/C). At an S/C of 2000:1 and 5000:1, the turnover frequency (TOF) and the enantiomeric excess (ee) value of the ATH of acetophenone promoted by the combination of l ‐proline benzimidazole 7c and [RuCl2(p‐cymene)]2 were up to 6880, 13 000 h?1 and 67%, 51% respectively. The ee value dropped off after the reaction reached equilibrium. The high activity and enantioselectivity of [RuCl2(p‐cymene)]2/ 7c was primarily influenced by the (S,R) configuration, whereas the (S,S) configuration had low activity and enantioselectivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A novel catalytic system for the hydrogenation of dimethyl itaconate has been developed by using rhodium–diphosphite complexes. These chiral diphosphite ligands were derived from glucopyranoside, d-mannitol derivatives, and binaphthyl or H8-binaphthyl phosphochloridites. The ligands based on the methyl 3,6-anhydro-α-d-glucopyranoside backbone and (R)- and (S)-binaphthol and/or (R)- and (S)-2,2′-dihydroxy-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthol gave almost complete conversion of the dimethyl itaconate and both enantiomers of dimethyl 2-methylsuccinate with excellent enantioselectivities. The stereochemically matched combination of methyl 3,6-anhydro-α-d-glucopyranoside and H8-(S)-binaphthyl in ligand 2,4-bis{[(S)-1,1′-H8-binaphthyl-2,2′-diyl]-phosphite} methyl 3,6-anhydro-α-d-glucopyranoside was essential to afford dimethyl 2-methylsuccinate with up to 98% ee. The sense of the enantioselectivity of products was predominantly determined by the configuration of the biaryl moieties of the ligands. An initial screening of [Rh(cod)2]BF4 with these ligands in the hydrogenation of (E)-2-(3-butoxy-4-methoxybenzylidene)-3-methylbutanoic acid was carried out. Good enantioselectivity (75% ee) and low yield for (R)-2-(3-butoxy-4-methoxybenzyl)-3-methylbutanoic acid were obtained.  相似文献   

13.
A ruthenium catalyst formed in situ by combining [Ru(p-cymene)Cl2]2 and an amino acid hydroxy-amide was found to catalyze efficiently the asymmetric reduction of aryl alkyl ketones under transfer hydrogenation conditions using ethanol as the hydrogen donor. The secondary alcohol products were obtained in moderate to good yields and with good to excellent enantioselectivity (up to 97% ee).  相似文献   

14.
Chiral N-acylethylenediamines represent a new class of modular ligands for the catalytic asymmetric addition of alkylzinc reagents to aldehydes. The N-acylethylenediamine moiety serves as a metal binding site, while attached amino acids provide the source of chirality. Three sites of diversity on the ligands were optimized to enhance the enantioselectivity of the catalysts using an iterative optimization procedure. The most effective ligand, 4k, was synthesized in a single reaction step from inexpensive and commercially available starting materials. This ligand (10 mol %) catalyzed the addition of Me2Zn to 2-naphthaldehyde, benzaldehyde, and 4-chlorobenzaldehyde to give the corresponding alcohol products in 86%, 84% and 81% ee, respectively.  相似文献   

15.
《Tetrahedron: Asymmetry》2014,25(3):258-262
The ligand design of one of the most successful monophosphite ligand classes in Rh-catalyzed hydrogenation was expanded upon by introducing several substituents at the C-3 position of the furanoside backbone. A small but structurally important library of monophosphite ligands was developed by changing the substituents at the C-3 position of the furanoside backbone and the substituents/configurations at the biaryl phosphite group. These new furanoside monophosphite ligands were evaluated in the Rh-catalyzed asymmetric hydrogenation of α,β-unsaturated carboxylic acid derivatives and enamides. The results show that the effect of introducing a substituent at the C-3 position of the furanoside backbone on the enantioselectivity depends not only on the configuration at the C-3 position of the furanoside backbone and the binaphthyl group but also on the substrate. Thus, the new ligands afforded high to excellent enantioselectivities in the reduction of carboxylic acid derivatives (ee’s up to >99.9%) and moderate ee’s (up to 67%) in the hydrogenation of enamides.  相似文献   

16.
The formation and 2-amino alcohol catalyzed addition of arylzinc reagents from and with boronic acids, respectively, is drastically accelerated to a few minutes under microwave irradiation without loss of enantioselectivity (up to 98% ee). Of the amino acid derived catalysts tested, the conformationally restricted bulky substituted aziridine-2-methanols derived from serine show the best overall performance in the formation of diarylmethanols.  相似文献   

17.
Several novel [2.2]paracyclophane-based amino thioureas have been designed and synthesized. The [2.2]paracyclophane-based amino thioureas were used as bifunctional catalysts for organocatalytic enantioselective aldol reactions between ketones and isatins, affording the desired adducts containing a chiral tertiary alcohol in high yields (up to 92% yield) and with good enantioselectivity (up to 88% ee). This is a successful example of employing planar chiral [2.2]paracyclophane-based amino thioureas in asymmetric aldol reactions.  相似文献   

18.
《Comptes Rendus Chimie》2014,17(7-8):725-730
A chiral (R) key intermediate of the biologically active form of terutroban has been prepared by asymmetric hydrogenation. The catalysts are based on very easily accessible ruthenium complexes modified by chiral phosphorous ligands. The use of the chiral catASium®T ligands family allowed us to realize this transformation efficiently in terms of yield and enantioselectivity (ee up to 92%) with high substrate/catalyst ratios.  相似文献   

19.
The iridium-catalyzed asymmetric hydrogenation of 2-methylindole using monodentate phosphites and amidophosphites as ligands was examined. The use of iodine as the additive resulted in increased enantioselectivity and conversion in the iridium-catalyzed hydrogenation of 2-methylindole. Full conversion and up to 80% ee were obtained with a catalyst based on a phosphite ligand.  相似文献   

20.
Multiple dendritic catalysts for asymmetric transfer hydrogenation   总被引:1,自引:0,他引:1  
The first and second generation multiple dendritic ligands based on chiral diamine were synthesized in a convergent approach and were well-characterized by NMR and MS techniques. Their ruthenium complexes prepared in situ had good solubility in the reaction medium (azeotrope of formic acid and triethylamine) and demonstrated high catalytic activity and enantioselectivity comparable to monomeric catalysts in the asymmetric transfer hydrogenation of ketones and imines. Quantitative yields and for some cases a slightly higher enantioselectivity (up to 98.7% ee) were obtained in the dendritic catalysis. Considering the high local catalyst concentrations at the periphery, diones were tested for the possible synergic reactivity between catalytic units at the surface, while no apparent differences were noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号