首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We deal with the linear programming problem in which input data can vary in some given real compact intervals. The aim is to compute the exact range of the optimal value function. We present a general approach to the situation the feasible set is described by an arbitrary linear interval system. Moreover, certain dependencies between the constraint matrix coefficients can be involved. As long as we are able to characterize the primal and dual solution set (the set of all possible primal and dual feasible solutions, respectively), the bounds of the objective function result from two nonlinear programming problems. We demonstrate our approach on various cases of the interval linear programming problem (with and without dependencies).  相似文献   

2.
We consider combinatorial optimization problems with uncertain parameters of the objective function, where for each uncertain parameter an interval estimate is known. It is required to find a solution that minimizes the worst-case relative regret. For minmax relative regret versions of some subset-type problems, where feasible solutions are subsets of a finite ground set and the objective function represents the total weight of elements of a feasible solution, and for the minmax relative regret version of the problem of scheduling n jobs on a single machine to minimize the total completion time, we present a number of structural, algorithmic, and complexity results. Many of the results are based on generalizing and extending ideas and approaches from absolute regret minimization to the relative regret case.  相似文献   

3.
In this paper, we consider the problem of finding an inner estimation of the solution set of a fuzzy linear system with a real-valued coefficient matrix and a fuzzy-valued right-hand side vector. The proposed idea is based on the utilization of interval Gaussian elimination procedure to produce an inner estimation of the solutions set. To this end, firstly we apply interval Gaussian elimination procedure to obtain the solution set of a fuzzy linear system and secondly, by limiting it via solving a crisp linear system, we find an inner estimation of the solutions set, such that it satisfies the related fuzzy linear system. Finally, several numerical examples are given to show the efficiency and ability of our method.  相似文献   

4.
We study the Set Covering Problem with uncertain costs. For each cost coefficient, only an interval estimate is known, and it is assumed that each coefficient can take on any value from the corresponding uncertainty interval, regardless of the values taken by other coefficients. It is required to find a robust deviation (also called minmax regret) solution. For this strongly NP-hard problem, we present and compare computationally three exact algorithms, where two of them are based on Benders decomposition and one uses Benders cuts in the context of a Branch-and-Cut approach, and several heuristic methods, including a scenario-based heuristic, a Genetic Algorithm, and a Hybrid Algorithm that uses a version of Benders decomposition within a Genetic Algorithm framework.  相似文献   

5.
In this paper, we consider the problem of finding reliably and with certainty all zeros of an interval equation within a given search interval for continuously differentiable functions over real numbers. We propose a new formality of interval arithmetic which is treated in a theoretical manner to develop and prove a new method, lying on the context of interval Newton methods. Some important theoretical aspects of the new method are stated and proved. Finally, an algorithmic realization of our method is proposed to be applied on a set of test functions, where the promising theoretical results are verified.  相似文献   

6.
Jens Gustedt  Michel Morvan 《Order》1992,9(3):291-302
We investigate problems related to the set of minimal interval extensions of N-free orders. This leads us to a correspondence between this set for an arbitrary order and a certain set of its maximal N-free reductions. We also get a 1-1-correspondence between the set of linear extensions of an arbitrary order and the set of minimal interval extensions of the linegraph of that order. This has an algorithmic consequence, namely the problem of counting minimal interval extensions of an N-free order is #P-complete. Finally a characterization of all N-free orders with isomorphic root graph is given in terms of their lattice of maximal antichains; the lattices are isomorphic iff the root graphs agree.This work was supported by the PROCOPE Program. The first author is supported by the DFG.  相似文献   

7.
The current research concerns multiobjective linear programming problems with interval objective functions coefficients. It is known that the most credible solutions to these problems are necessarily efficient ones. To solve the problems, this paper attempts to propose a new model with interesting properties by considering the minimax regret criterion. The most important property of the new model is attaining a necessarily efficient solution as an optimal one whenever the set of necessarily efficient solutions is nonempty. In order to obtain an optimal solution of the new model, an algorithm is suggested. To show the performance of the proposed algorithm, numerical examples are given. Finally, some special cases are considered and their characteristic features are highlighted.  相似文献   

8.
In this paper, we propose a new Decision Making model, enabling to assess a finite number of alternatives according to a set of bounds on the preference ratios for the pairwise comparisons between alternatives, that is, an “interval judgement matrix”. In the case in which these bounds cannot be achieved by any assessment vector, we analyze the problem of determining of an efficient or Pareto-optimal solution from a multi-objective optimization problem. This multi-objective formulation seeks for assessment vectors that are near to simultaneously fulfil all the bound requirements imposed by the interval judgement matrix. Our new model introduces a linear optimization problem in order to define a consistency index for the interval matrix. By solving this optimization problem it can be associated a weakly efficient assessment vector to the consistency index in those cases in which the bound requirements are infeasible. Otherwise, this assessment vector fulfils all the bound requirements and has geometrical properties that make it appropriate as a representative assessment vector of the set of feasible weights.  相似文献   

9.
Methods of interval mathematics are used to find upper and lower bounds for the solution of two-point boundary-value problems at discrete mesh points. They include interval versions of shooting and of finite-difference techniques for linear and non-linear differential equations of second order, and of finite-difference methods for Sturm-Liouville eigenvalue problems.Good results are obtained whenever the difficulties of dependency-width can be avoided, and particularly for the finite-difference method when the associated matrix is anM matrix.  相似文献   

10.
For a given set of intervals on the real line, we consider the problem of ordering the intervals with the goal of minimizing an objective function that depends on the exposed interval pieces (that is, the pieces that are not covered by earlier intervals in the ordering). This problem is motivated by an application in molecular biology that concerns the determination of the structure of the backbone of a protein.We present polynomial-time algorithms for several natural special cases of the problem that cover the situation where the interval boundaries are agreeably ordered and the situation where the interval set is laminar. Also the bottleneck variant of the problem is shown to be solvable in polynomial time. Finally we prove that the general problem is NP-hard, and that the existence of a constant-factor-approximation algorithm is unlikely.  相似文献   

11.
Usually, interval global optimization algorithms use local search methods to obtain a good upper (lower) bound of the solution. These local methods are based on point evaluations. This paper investigates a new local search method based on interval analysis information and on a new selection criterion to direct the search. When this new method is used alone, the guarantee to obtain a global solution is lost. To maintain this guarantee, the new local search method can be incorporated to a standard interval GO algorithm, not only to find a good upper bound of the solution, but also to simultaneously carry out part of the work of the interval B&B algorithm. Moreover, the new method permits improvement of the guaranteed upper bound of the solution with the memory requirements established by the user. Thus, the user can avoid the possible memory problems arising in interval GO algorithms, mainly when derivative information is not used. The chance of reaching the global solution with this algorithm may depend on the established memory limitations. The algorithm has been evaluated numerically using a wide set of test functions which includes easy and hard problems. The numerical results show that it is possible to obtain accurate solutions for all the easy functions and also for the investigated hard problems.  相似文献   

12.
Criteria for symmetry and boundedness are found for the combined solution set of a system of linear algebraic equations with interval coefficients. It is shown that the problem of the best inner interval estimation of a symmetric solution set can be exactly solved by linear programming methods.  相似文献   

13.
We investigate solution techniques for numerical constraint-satisfaction problems and validated numerical set integration methods for computing reachable sets of nonlinear hybrid dynamical systems in the presence of uncertainty. To use interval simulation tools with higher-dimensional hybrid systems, while assuming large domains for either initial continuous state or model parameter vectors, we need to solve the problem of flow/sets intersection in an effective and reliable way. The main idea developed in this paper is first to derive an analytical expression for the boundaries of continuous flows, using interval Taylor methods and techniques for controlling the wrapping effect. Then, the event detection and localization problems underlying flow/sets intersection are expressed as numerical constraint-satisfaction problems, which are solved using global search methods based on branch-and-prune algorithms, interval analysis and consistency techniques. The method is illustrated with hybrid systems with uncertain nonlinear continuous dynamics and nonlinear invariants and guards.  相似文献   

14.
Crisp comparison matrices lead to crisp weight vectors being generated. Accordingly, an interval comparison matrix should give an interval weight estimate. In this paper, a goal programming (GP) method is proposed to obtain interval weights from an interval comparison matrix, which can be either consistent or inconsistent. The interval weights are assumed to be normalized and can be derived from a GP model at a time. The proposed GP method is also applicable to crisp comparison matrices. Comparisons with an interval regression analysis method are also made. Three numerical examples including a multiple criteria decision-making (MCDM) problem with a hierarchical structure are examined to show the potential applications of the proposed GP method.  相似文献   

15.
We consider a linear programming problem with interval data. We discuss the problem of checking whether a given solution is optimal for each realization of interval data. This problem was studied for particular forms of linear programming problems. Herein, we extend the results to a general model and simplify the overall approach. Moreover, we inspect computational complexity, too. Eventually, we investigate a related optimality concept of semi-strong optimality, showing its characterization and complexity.  相似文献   

16.
This paper deals with interval parametric linear systems with general dependencies. Motivated by the so‐called parameterized solution introduced by Kolev, we consider the enclosures of the solution set in a revised affine form. This form is advantageous to a classical interval solution because it enables us to obtain both outer and inner bounds for the parametric solution set and, thus, intervals containing the endpoints of the hull solution, among others. We propose two solution methods, a direct method called the generalized expansion method and an iterative method based on interval‐affine Krawczyk iterations. For the iterative method, we discuss its convergence and show the respective sufficient criterion. For both methods, we perform theoretical and numerical comparisons with some other approaches. The numerical experiments, including also interval parametric linear systems arising in practical problems of structural and electrical engineering, indicate the great usefulness of the proposed methodology and its superiority over most of the existing approaches to solving interval parametric linear systems.  相似文献   

17.
Optimization problems on graphs with interval parameters are considered, and exponential and polynomial bounds for their computational complexity are obtained. For a certain subclass of polynomially solvable problems, two algorithms are proposed—one of them for finding an optimal solution and the other one for finding a suboptimal solution. Sufficient conditions for the statistical efficiency of the algorithm for finding a suboptimal solution are obtained.  相似文献   

18.
Geometric programming provides a powerful tool for solving nonlinear problems where nonlinear relations can be well presented by an exponential or power function. In the real world, many applications of geometric programming are engineering design problems in which some of the problem parameters are estimates of actual values. This paper develops a solution method when the exponents in the objective function, the cost and the constraint coefficients, and the right-hand sides are imprecise and represented as interval data. Since the parameters of the problem are imprecise, the objective value should be imprecise as well. A pair of two-level mathematical programs is formulated to obtain the upper bound and lower bound of the objective values. Based on the duality theorem and by applying a variable separation technique, the pair of two-level mathematical programs is transformed into a pair of ordinary one-level geometric programs. Solving the pair of geometric programs produces the interval of the objective value. The ability of calculating the bounds of the objective value developed in this paper might help lead to more realistic modeling efforts in engineering optimization areas.  相似文献   

19.
Uncertainty and integer variables often exist together in economics and engineering design problems. The goal of robust optimization problems is to find an optimal solution that has acceptable sensitivity with respect to uncertain factors. Including integer variables with or without uncertainty can lead to formulations that are computationally expensive to solve. Previous approaches for robust optimization problems under interval uncertainty involve nested optimization or are not applicable to mixed-integer problems where the objective or constraint functions are neither quadratic, nor linear. The overall objective in this paper is to present an efficient robust optimization method that does not contain nested optimization and is applicable to mixed-integer problems with quasiconvex constraints (? type) and convex objective funtion. The proposed method is applied to a variety of numerical examples to test its applicability and numerical evidence is provided for convergence in general as well as some theoretical results for problems with linear constraints.  相似文献   

20.
In this paper we introduce a minimax model for network connection problems with interval parameters. We consider how to connect given nodes in a network with a path or a spanning tree under a given budget, where each link is associated with an interval and can be established at a cost of any value in the interval. The quality of an individual link (or the risk of link failure, etc.) depends on its construction cost and associated interval. To achieve fairness of the network connection, our model aims at the minimization of the maximum risk over all links used. We propose two algorithms that find optimal paths and spanning trees in polynomial time, respectively. The polynomial solvability indicates salient difference between our minimax model and the model of robust deviation criterion for network connection with interval data, which gives rise to NP-hard optimization problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号