首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In this paper, a stage-structured predator–prey model is proposed and analyzed to study how the type of refuges used by prey population influences the dynamic behavior of the model. Two types of refuges: those that protect a fixed number of prey and those that protect a constant proportion of prey are considered. Mathematical analyses with regard to positivity, boundedness, equilibria and their stabilities, and bifurcation are carried out. Persistence condition which brings out the useful relationship between prey refuge parameter and maturation time delay is established. Comparing the conclusions obtained from analyzing properties of two types of refuges using by prey, we observe that value of maturation time at which the prey population and hence predator population go extinct is greater in case of refuges which protect a constant proportion of prey.  相似文献   

2.
In this paper, we study a periodic predator–prey system with prey impulsive diffusion in two patches. On the basis of comparison theorem of impulsive differential equation and other analysis methods, sufficient and necessary conditions on the predator–prey system where predator have not other food source are established. Two examples and numerical simulations are presented to illustrate the feasibility of our results. A conclusion is given in the end.  相似文献   

3.
In this paper, a predator–prey Leslie–Gower model with disease in prey has been developed. The total population has been divided into three classes, namely susceptible prey, infected prey and predator population. We have also incorporated an infected prey refuge in the model. We have studied the positivity and boundedness of the solutions of the system and analyzed the existence of various equilibrium points and stability of the system at those equilibrium points. We have also discussed the influence of the infected prey refuge on each population density. It is observed that a Hopf bifurcation may occur about the interior equilibrium taking refuge parameter as bifurcation parameter. Our analytical findings are illustrated through computer simulation using MATLAB, which show the reliability of our model from the eco-epidemiological point of view.  相似文献   

4.
We study a predator–prey model with the Allee effect on prey and whose dynamics is described by a system of stochastic differential equations assuming that environmental randomness is represented by noise terms affecting each population. More specifically, we consider a term that expresses the variability of the growth rate of both species due to external, unpredictable events. We assume that the intensities of these perturbations are proportional to the population size of each species. With this approach, we prove that the solutions of the system have sample pathwise uniqueness and bounded moments. Moreover, using an Euler–Maruyama-type numerical method we obtain approximated solutions of the system with different intensities for the random noise and parameters of the model. In the presence of a weak Allee effect, we show that long-term survival of both populations can occur. On the other hand, when a strong Allee effect is considered, we show that the random perturbations may induce the non-trivial attracting-type invariant objects to disappear, leading to the extinction of both species. Furthermore, we also find the Maximum Likelihood estimators for the parameters involved in the model.  相似文献   

5.
6.
7.
A predator–prey model with logistic growth in prey is modified by introducing an SIS parasite infection in the prey. We have studied the combined effect of environmental toxicant and disease on prey–predator system. It is assumed in this paper that the environmental toxicant affects both prey and predator population and the infected prey is assumed to be more vulnerable to the toxicant and predation compared to the sound prey individuals. Thresholds are identified which determine when system persists and disease remains endemic.  相似文献   

8.
9.
Recently, Venturino and Petrovskii proposed a general predator–prey model with group defense for prey species (Venturino and Petrovskii, 2013). The local dynamics had been studied and showed that the model might undergo Hopf bifurcation, and have an extinction domain. In this paper, we dedicate ourselves to the investigation of the global dynamics of the model by establishing the conditions of the nonexistence of periodic orbits, and the existence and uniqueness of limit cycles.  相似文献   

10.
In this paper, a predator–prey–disease model with immune response in the infected prey is formulated. The basic reproduction number of the within-host model is defined and it is found that there are three equilibria: extinction equilibrium, infection-free equilibrium and infection-persistent equilibrium. The stabilities of these equilibria are completely determined by the reproduction number of the within-host model. Furthermore, we define a basic reproduction number of the between-host model and two predator invasion numbers: predator invasion number in the absence of disease and predator invasion number in the presence of disease. We have predator and infection-free equilibrium, infection-free equilibrium, predator-free equilibrium and a co-existence equilibrium. We determine the local stabilities of these equilibria with conditions on the reproduction and invasion reproduction numbers. Finally, we show that the predator-free equilibrium is globally stable.  相似文献   

11.
The disease effect on ecological systems is an important issue from mathematical and experimental point of view. In this paper, we formulate and analyze a predator–prey model for the susceptible population, infected population and their predator population with modified Leslie–Gower (or Holling–Tanner) functional response. Mathematical analysis of the model equations with regard to invariance of nonnegativity and boundedness of solutions, local and global stability of the biological feasible equilibria and permanence of the system are presented. When the rate of infection crosses a critical value, we determine that the strictly positive interior equilibrium undergoes Hopf bifurcation. From our numerical simulations, we observe that the predation rate also plays an important role on the dynamic behavior of our system.  相似文献   

12.
A three dimensional ecoepidemiological model consisting of susceptible prey, infected prey and predator is proposed and analysed in the present work. The parameter delay is introduced in the model system for considering the time taken by a susceptible prey to become infected. Mathematically we analyze the dynamics of the system such as, boundedness of the solutions, existence of non-negative equilibria, local and global stability of interior equilibrium point. Next we choose delay as a bifurcation parameter to examine the existence of the Hopf bifurcation of the system around its interior equilibrium. Moreover we use the normal form method and center manifold theorem to investigate the direction of the Hopf bifurcation and stability of the bifurcating limit cycle. Some numerical simulations are carried out to support the analytical results.  相似文献   

13.
14.
15.
The local dynamics of a two-trophic chain in the presence of both overcrowding and undercrowding effects on prey growth is investigated. The starting point is given by a general predator–prey system, in which the prey growth rate and the trophic interaction function are defined only by some properties determining their shapes; in particular, the prey growth function is assumed to model a strong Allee effect. A stability analysis of the system using the predation efficiency as bifurcation parameter is performed; conditions for the existence and stability of extinction and coexistence equilibrium states are determined, and peculiar features of the dynamics exhibited by the system are presented, with particular attention to limit cycles and bistability situations. Results are compared with those obtained when overcrowding and undercrowding effects are considered separately.  相似文献   

16.
Establishing and researching a population dynamical model based on the differential equation is of great significance. In this paper, a predator–prey system with inducible defense and disease in the prey is built from biological evolution and Eco-epidemiology. The effect of disease on population stability in the predator–prey system with inducible defense is studied. Firstly, we verify the positivity and uniform boundedness of the solutions of the system. Then the existence and stability of the equilibria are studied. There are no more than nine equilibrium points in the system. We use a sophisticated parameter transformation to study the properties of the coexistence equilibrium points of the system. A sufficient condition is established for the existence of Hopf bifurcation. Numerical simulations are performed to make analytical studies more complete.  相似文献   

17.
We study the adaptive dynamics of predator–prey systems modeled by a dynamical system in which the traits of predators and prey are allowed to evolve by small mutations. When only the prey are allowed to evolve, and the size of the mutational change tends to 0, the system does not exhibit long term prey coexistence and the trait of the resident prey type converges to the solution of an ODE. When only the predators are allowed to evolve, coexistence of predators occurs. In this case, depending on the parameters being varied, we see that (i) the number of coexisting predators remains tight and the differences in traits from a reference species converge in distribution to a limit, or (ii) the number of coexisting predators tends to infinity, and we calculate the asymptotic rate at which the traits of the least and most “fit” predators in the population increase. This last result is obtained by comparison with a branching random walk killed to the left of a linear boundary and a finite branching–selection particle system.  相似文献   

18.
In this paper, a diffusive predator–prey system with a constant prey refuge and time delay subject to Neumann boundary condition is considered. Local stability and Turing instability of the positive equilibrium are studied. The effect of time delay on the model is also obtained, including locally asymptotical stability and existence of Hopf bifurcation at the positive equilibrium. And the properties of Hopf bifurcation are determined by center manifold theorem and normal form theorem of partial functional differential equations. Some numerical simulations are carried out.  相似文献   

19.
We study a predator–prey model with two alien predators and one aborigine prey in which the net growth rates of both predators are negative. We characterize the invading speed of these two predators by the minimal wave speed of traveling wave solutions connecting the predator-free state to the co-existence state. The proof of the existence of traveling waves is based on a standard method by constructing (generalized) upper-lower-solutions with the help of Schauder’s fixed point theorem. However, in this three species model, we are able to construct some suitable pairs of upper-lower-solutions not only for the super-critical speeds but also for the critical speed. Moreover, a new form of shrinking rectangles is introduced to derive the right-hand tail limit of wave profile.  相似文献   

20.
In this work, we propose a stage-structured predator–prey model, with prey impulsively diffusing between two patches. Using the discrete dynamical system determined by the stroboscopic map, we obtain a predator-extinction periodic solution. Further, the predator-extinction periodic solution is globally attractive. By the theory on the delay and impulsive differential equation, we prove that the investigated system is permanent. Our results indicate that the discrete time delay has influence to the dynamical behaviors of the investigated system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号