首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
This paper is devoted to investigate synchronization and antisynchronization of N‐coupled general fractional‐order complex chaotic systems described by a unified mathematical expression with ring connection. By means of the direct design method, the appropriate controllers are designed to transform the fractional‐order error dynamical system into a nonlinear system with antisymmetric structure. Thus, by using the recently established result for the Caputo fractional derivative of a quadratic function and a fractional‐order extension of the Lyapunov direct method, several stability criteria are derived to ensure the occurrence of synchronization and antisynchronization among N‐coupled fractional‐order complex chaotic systems. Moreover, numerical simulations are performed to illustrate the effectiveness of the proposed design.  相似文献   

2.
In this paper, the exponential generalized synchronization for a class of coupled systems with uncertainties is defined. A novel and powerful method is proposed to investigate the generalized synchronization based on the adaptive control technique. According to the Lyapunov stability theory, rigorous proof is given for the exponential stability of error system. In comparison with previous schemes, the presented method shortens the synchronization time and is more applicable in practice. Besides, it is shown that the synchronization effect is robust against the uncertain factors. Some typical chaotic and hyper-chaotic systems are taken as examples to illustrate above approach. The corresponding numerical simulations are demonstrated to verify the effectiveness of proposed method.  相似文献   

3.
Synchronization in an array of coupled identical nonlinear dynamical systems have attracted increasing attention from various fields of science and engineering. In this paper, we investigate the synchronization phenomenon in tree-like dynamical networks. Based on the LaSalle invariant principle, a simple and systematic adaptive control scheme with variable coupling strength is proposed for the synchronization of tree-like dynamical networks without any knowledge of the concrete structure of isolate system. This result indicates that synchronization can be achieved for strong enough coupling if there exists a system (located at the root of the tree) which directly or indirectly influences all other systems. Furthermore, the main result is applied to several Lorenz chaotic systems coupled by a tree. And numerical simulations are also given to show the effectiveness of the proposed synchronization method.  相似文献   

4.
This paper investigates the synchronization of coupled unified chaotic systems via active control. The synchronization is given in the slave–master scheme and the controller ensures that the states of the controlled chaotic slave system exponentially synchronize with the state of the master system. Numerical simulations are provided for illustration and verification of the proposed method.  相似文献   

5.
This paper investigates the quadratic optimal synchronization of uncertain chaotic systems with parameter mismatch, parametric perturbations and external disturbances on both master and slave systems. A robust control scheme based on Lyapunov stability theory and quadratic optimal control approach is derived to realize chaotic synchronization. The sufficient criterion for stability condition is formulated in a linear matrix inequality (LMI) form. The effect of uncertain parameters and external disturbance is suppressed to an H norm constraint. An adaptive algorithm is proposed to adjust the uncertain bound in the robust controller avoiding the chattering phenomena. The simulation results for synchronization of the Chua’s circuit system and the Lorenz system demonstrate the effectiveness of the proposed scheme.  相似文献   

6.
Due to the unpredictability of the scaling factor of projective synchronization in coupled partially linear systems, it is hard to know for sure the terminal state of the synchronized dynamics. In this paper, a simple adaptive linear feedback control method is proposed for controlling the scaling factor onto a desired value, based on the invariance principle of differential equations. Firstly, we prove the synchronizability of the proposed simple adaptive projective synchronization control method from the viewpoint of mathematics. Then, two numerical examples are presented to illustrate the applications of the derived results. Finally, we propose a communication scheme based on the adaptive projective synchronization of the Lorenz chaotic system. Numerical simulation shows its feasibility.  相似文献   

7.
This work investigates the adaptive Q–S synchronization of coupled chaotic (or hyper-chaotic) systems with stochastic perturbation, delay and unknown parameters. The sufficient conditions for achieving Q–S synchronization of two stochastic chaotic systems are derived based on the invariance principle of stochastic differential equation. By the adaptive control technique, the control laws and the corresponding parameter update laws are proposed such that the stochastic Q–S synchronization of non-identical chaotic (or hyper-chaotic) systems is to be obtained. Finally, two illustrative numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.  相似文献   

8.
This paper first presents a rigorous mathematical analysis for the active sliding mode control method proposed recently by Haeri and Emadzadeh. Second, the technique is applied to achieve synchronization between two coupled systems of J-J. Numerical simulations are used to verify the above analytical results.  相似文献   

9.
This paper addresses dynamic synchronization of two FitzHugh-Nagumo (FHN) systems coupled with gap junctions. All the states of the coupled chaotic system, treating either as single-input or two-input control system, are synchronized by stabilizing their error dynamics, using simplest and locally robust control laws. The local asymptotic stability, chosen by utilizing the local Lipschitz nonlinear property of the model to address additionally the non-failure of the achieved synchronization, is ensured by formulating the matrix inequalities on the basis of Lyapunov stability theory. In the presence of disturbances, it ensures the local uniform ultimate boundedness. Furthermore, the robustness of the proposed methods is ensured against bounded disturbances besides providing the upper bound on disturbances. To the best of our knowledge, this is the computationally simplest solution for synchronization of coupled FHN modeled systems along with unique advantages of less conservative local asymptotic stability of synchronization errors with robustness. Numerical simulations are carried out to successfully validate the proposed control strategies.  相似文献   

10.
Generalized function projective (lag, anticipated and complete) synchronization between two different complex networks with nonidentical nodes is investigated in this paper. Based on Barbalat’s lemma, some sufficient synchronization criteria are derived by applying the nonlinear feedback control. Although previous work studied function projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In our work, the dynamics of the nodes of the complex networks are any chaotic systems without the limitation of the partial linearity. In addition, each network can be undirected or directed, connected or disconnected, and nodes in either network may have identical or different dynamics. The proposed strategy is applicable to almost all kinds of complex networks. Numerical simulations further verify the effectiveness and feasibility of the proposed synchronization method. Numeric evidence shows that the synchronization rate is sensitively influenced by the feedback strength, the time delay, the network size and the network topological structure.  相似文献   

11.
A discrete-time adaptive fuzzy control scheme is presented to synchronize model-unknown coupled Henon-map lattices (CHMLs). The proposed method is robust to approximate errors, parameter mismatches and disturbances, because it integrates the merits of the adaptive fuzzy systems and the variable structure control with a sector. The simulation results of synchronization of CHMLs show that it not only can synchronize model-unknown CHMLs but also is robust against parameter mismatches and noise of the systems. These merits are advantageous for engineering realization.  相似文献   

12.
This paper investigates the chaos synchronization problem for drive-response Chua’s systems coupled with dead-zone nonlinear input. An estimator of unknown nonlinear term is proposed. Using the sliding mode control technique and the estimate of unknown nonlinear term, a novel variable structure controller which guarantees projective synchronization even when the dead-zone nonlinearity is present. Computer simulations are provided to demonstrate the effectiveness of the proposed synchronization scheme.  相似文献   

13.
In this paper, the problem of exponential synchronization of quaternion-valued coupled systems based on event-triggered impulsive control is investigated for the first time. It should be pointed out that the coupling strength is quaternion-valued and time-varying, which makes our model more in line with practical models. First, we prove that event-triggered impulsive control can exclude Zeno behavior. Then, based on the Lyapunov method and the graph theory, some sufficient conditions are derived to ensure that quaternion-valued coupled systems reach synchronization. Furthermore, as an application of our theoretical results, exponential synchronization of quaternion-valued Kuramoto oscillators is studied in detail and a synchronization criterion is presented. Finally, some numerical simulations are given to show the effectiveness of our theoretical results.  相似文献   

14.
研究了分数阶双指数混沌系统的自适应滑模同步问题.通过设计滑模函数和控制器,构造了平方Lyapunov函数进行稳定性分析.利用Barbalat引理证明了同步误差渐近趋于零,获得了系统取得自适应滑模同步的充分条件.数值仿真结果表明:选取适当的控制器及与滑模函数,分数阶双指数混沌系统取得自适应滑模同步.  相似文献   

15.
In this paper, design PD controller for master–slave synchronization of chaotic Lur’e systems with sector and slope restricted nonlinearities is presented. A new synchronization criterion is proposed based on Lyapunov functions with quadratic form of states and nonlinear functions of the systems. Sector and slope bounds are employed to the Lyanunov–Krasovskii functional through convex representation of the nonlinearities so that less conservative stability conditions are obtained. The criteria is given in terms of linear matrix inequalities (LMIs) by using Finsler’s lemma. A numerical example is provided to illustrate the effectiveness of the method.  相似文献   

16.
In this paper, a theory for synchronization of multiple dynamical systems under specific constraints is developed from a theory of discontinuous dynamical systems. The concepts on synchronization of two or more dynamical systems to specific constraints are presented. The synchronization, desynchronization and penetration of multiple dynamical systems to multiple specified constraints are discussed, and the necessary and sufficient conditions for such synchronicity are developed. The synchronicity of two dynamical systems to a single specific constraint and to multiple specific constraints is investigated. Finally, the synchronization and the corresponding complexity for multiple slave systems with multiple master systems are discussed briefly. The meaning of synchronization for dynamical systems with constraints is extended as a generalized, universal concept. The theory presented in this paper may be as a universal theory for dynamical systems. The paper provides a theoretic frame work in order to control slave systems which can be synchronized with master systems through specific constraints in a general sense.  相似文献   

17.
In this paper, we formulate and investigate the synchronization of stochastic coupled systems via feedback control based on discrete-time state observations (SCSFD). The discrete-time state feedback control is used in the drift parts of response system. Combining Lyapunov method with graph theory, the upper bound of duration between two consecutive state observations is provided. And a global Lyapunov function of SCSFD is presented, which derives some sufficient criteria to guarantee the synchronization of drive–response systems in the sense of mean-square asymptotical synchronization. In addition, the theoretical results are applied to stochastic coupled oscillators and second-order Kuramoto oscillators. Finally, two numerical examples are given to verify the effectiveness of the theoretical results.  相似文献   

18.
In this paper, the adaptive synchronization method of coupled system is proposed for multi-Lorenz systems family. This method can avoid estimating the value of coupling coefficient. Strict theoretical proofs are given. And we derived a sufficient condition of synchronization for a general unidirectional coupling ring network with N identical Lorenz systems. The network is coupled through the first state variable of each equation. In fact, the whole unidirectional coupling network will synchronize by adding only one adaptive feedback gain equation. Numerical simulations show the effectiveness of the methods.  相似文献   

19.
In this paper, designing an appropriate linear and nonlinear feedback control, the two identical integer order chaotic systems are synchronized by analytically and numerically. It has been realizing that, synchronization using linear feedback control method is efficient than nonlinear feedback control method due to the less computational complexity and the synchronization error. ElGamal public key cryptosystem is described through the proposed Diffie–Hellman key exchange protocol based on the synchronized chaotic systems using linear feedback control and their security are analyzed. The numerical simulations are given to validate the correctness of the proposed synchronization of chaotic systems and the ElGamal cryptosystem.  相似文献   

20.
In this paper, we apply the simple adaptive-feedback control scheme to synchronize a class of chaotic non-autonomous systems. Based on the invariance principle of differential equations, some generic sufficient conditions for global asymptotic synchronization are obtained. Unlike the usual linear feedback, the variable feedback strength is automatically adapted to completely synchronize two identical systems and simple to implement in practice. As illustrative examples, synchronization of two parametrically excited chaotic pendulums and that of two 4D new systems are considered here. Numerical simulations show the proposed method is effective and robust against the effect of noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号