首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of N-(2-chlorobenzylidene)-N,N-dimethyl-1,3-propanediamine (1) and N-(2-bromo-3,4-(MeO)2-benzylidene)-N,N-dimethyl-1,3-propanediamine (20) with tris(dibenzylideneacetone)dipalladium(0) in toluene gave the mononuclear cyclometallated complexes [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(Cl)] (2) and [Pd{3,4-(MeO)2C6H2C(H)=NCH2CH2CH2NMe2}(Br)] (21), respectively, via oxidative addition reaction with the ligand as a C,N,N terdentate ligand. Reaction of 2 with sodium bromide or iodide in an acetone–water mixture gave the cyclometallated analogues of 2, [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(Br)] (3) and [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(I)] (4), by halogen exchange. The X-ray crystal structures of 2, 3 and 4 were determined and discussed. Treatment of 2, 3, 4 and 21 with tertiary monophosphines in acetone gave the mononuclear cyclometallated complexes [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(L)(X)] (6: L=PPh3, X=Cl; 7: L=PPh3, X=Br; 8: L=PPh3, X=I; 9: L=PMePh2, X=Cl; 10: L=PMe2Ph, X=Cl) and [Pd{3,4-(MeO)2C6H2C(H)=NCH2CH2CH2NMe2}(L)(Br)] (22: L=PPh3; 23: L=PMePh2; 24: L=PMe2Ph). A fluxional behaviour due to an uncoordinated CH2CH2CH2NMe2 could be determined by variable temperature NMR spectroscopy. Treatment of 2, 3 and 4 with silver trifluoromethanesulfonate followed by reaction with triphenylphosphine gave the mononuclear complex [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(PPh3)][F3CSO3] (11) where the Pd–NMe2 bond was retained. Reaction of 2, 3 and 4 with ditertiary diphosphines in a cyclometallated complex–diphosphine 2:1 molar ratio gave the binuclear complexes [{Pd[C6H4C(H)=NCH2CH2CH2NMe2](X)}2(μ-L–L)][L–L=PPh2(CH2)4PPh2(dppb) (13, X=Cl; 14, X=Br; 15, X=I; L–L=PPh2(CH2)5PPh2(dpppe): 16, X=Cl; 17, X=Br; 18, X=I) with palladium–NMe2 bond cleavage. Treatment of 2, 3 and 4 with ditertiary diphosphines, in a cyclometallated complex–diphosphine 2:1, molar ratio and AgSO3CF3 gave the binuclear cyclometallated complexes [{Pd[C6H4C(H)=NCH2CH2CH2NMe2]}2(μ-L–L)][F3CSO3]2 (11: L–L=PPh2(CH2)4PPh2(dppb), X=Cl; 12: L–L=PPh2(CH2)5PPh2 (dpppe), X=Cl). Reaction of 2 with the ditertiary diphosphine cis-dppe in a cyclometallated complex–diphosphine 1:1 molar ratio followed by treatment with sodium perchlorate gave the mononuclear cyclometallated complex [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(cis-PPh2CH=CHPPh2–P,P)][ClO4] (19).  相似文献   

2.
Four new coordination polymers of cadmium(II) with hexamethylenetetramine (htm) have been synthesized and characterized by routine physicochemical techniques as well as by X-ray single crystal structure analysis. They are [CdBr(htm)(SCN)(H2O)2·CH3OH]n (1), [CdI(htm)(SCN)(H2O)2·0.5(CH3OH)]n (2), [Cd2(htm)3(SCN)4(H2O)]n·nH2O (3) and [Cd3Br6(htm)2(H2O)5·(htm)(H2O)6]n (4). Complexes 1, 2 and 3 exhibit 1D polymeric structure and complex 4 shows a 2D undulated layered arrangement, containing Cd6(htm)6 hexagonal units as building block, which extended to a 3D supramolecular architecture through hydrogen bonding. Thorough thermal investigation suggest that as far as the thermal stability of Cd(II)-htm bond is concerned it attains the maximum in complex 1 and minimum in complex 4. In case of complex 3 the thermal study inferred that CdS end product was obtained at ∼730 °C, whereas in case of other complexes the thermally stable end product remained unidentified. Solid state fluorescence study shows that all the complexes are luminescent at room temperature except complex 3.  相似文献   

3.
The reaction of equimolar quantities of LiOCH2CH2NMe2 and E14(OCH2CH2NMe2)2 (E14=Ge, Sn) in ether yielded new ate complexes [LiE14(OCH2CH2NMe2)3]2 (E14=Ge (1), Sn (2)) with bidentate ligands. The compounds 1 and 2 are white crystalline substances which are highly soluble in THF and pyridine and very sensitive to the traces of oxygen and moisture. The structures of these compounds are studied by X-ray diffraction analysis. The ate complexes 1 and 2 are powerful nucleophiles and may be employed as ligands (neutral) in the coordination chemistry of the transition metals. The electronegative O-substituents at the divalent E14 atoms render them less oxidizable than alkyl- or aryl-substituted derivatives, and the bidentate ligands, owing to intramolecular donor-acceptor interactions, make them more thermodynamically stable compared to monodentate ligands.  相似文献   

4.
The compounds [MoCl(NAr)2R] (R=CH2CMe2Ph (1) or CH2CMe3(2); Ar=2,6-Pri2C6H3) have been prepared from [MoCl2(NAr)2(dme)] (dme=1,2-dimethoxyethane) and one equivalent of the respective Grignard reagent RMgCl in diethyl ether. Similarly, the mixed-imido complex [MoCl2(NAr)(NBut)(dme)] affords [MoCl(NAr)(NBut)(CH2CMe2Ph)] (3). Chloride substitution reactions of 1 with the appropriate lithium reagents afford the compounds [MoCp(NAr)2(CH2CMe2Ph)] (4) (Cp=cyclopentadienyl), [MoInd(NAr)2(CH2CMe2Ph)] (5) (Ind=Indenyl), [Mo(OBut)(NAr)2(CH2CMe 2Ph)] (6), [MoMe(NAr)2(CH2CMe2Ph)] (7), [MoMe(PMe3)(NAr)2(CH2CMe 2Ph)] (8) (formed in the presence of PMe3) and [Mo(NHAr)(NAr)2(CH2CMe2P h)](9). In the latter case, a by-product {[Mo(NAr)2(CH2CMe2Ph) ]2(μ-O)}(10) has also been isolated. The crystal structures of 1, 4, 5 and 10 have been determined. All possess distorted tetrahedral metal centres with cis near-linear arylimido ligands; in each case (except 5, for which the evidence is unclear) there are α-agostic interactions present.  相似文献   

5.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

6.
Lewis-base mediated fragmentation of polymeric nickel(II) fumarate and oxalate are attempted using chelating σ-donor diamines like ethylenediamine (en) and 1,3-diaminopropane (dap) in various conditions which yielded [Ni(en)3](fum)·3H2O (1), [Ni(en)3](ox) (2), [Ni(dap)2(fum)] (3) and [Ni(dap)(ox)]·2H2O (4). While 1 and 2 are molecular products each containing octahedral [Ni(en)3]2+ moieties and the anionic dicarboxylate species, 3 and 4 are dap-incorporated polymeric products. The fumarate derivative 1 containing [Ni(en)3]2+ moieties crystallizes in the monoclinic space group C2/c with a = 17.899(4) Å, b = 11.747(2) Å, c = 10.748(2) Å, β = 125.59(3)°, V = 1837.7(6) Å3, Z = 4, while the oxalate analogue 2 is seen to be in the trigonal space group P−31c with a = 8.8770(13) Å, b = 8.8770(13) Å, c = 10.482(2) Å, γ = 120°, V = 715.3(2) Å3, Z = 2. The octahedral [Ni(en)3] units in both 1 and 2 are seen to be strongly H-bonded to the dicarboxylate moieties through the coordinated en units leading to a three-dimensional network. However, in 1 the water molecules also take part in the H-bonding and contribute to the overall 3D structure. In both 1 and 2 the crystal packing is done with the [Ni(en)3]2+ units with absolute configuration Λ(δδδ) and its mirror conformer with Δ configuration in exactly equal numbers. Spectral (IR and UV–Visible) and magnetic measurements were carried out and some of the ligand-field parameters like Dq, B and β were evaluated for all the four compounds. These values suggest the presence of octahedrally coordinated nickel(II) in all the four complexes. Spectral data suggest that 3 has the two chelating dap moieties and the fumarate coordinated in η1 form through both its carboxylate moieties while 4 has one chelating dap and the oxalate moiety coordinated in η4-bis-chelating form. Though both 1 and 2 are made of the same type of [Ni(en)3]2+ units their thermograms give entirely different thermal features; 1 showing three clearly successive and step-wise dissociation of each en unit while 2 having a combined loss of two en units in the first thermal step. The relevant thermodynamic and kinetic parameters like Ea and ΔS also could be evaluated for various thermal steps for the compounds 14 using Coats–Redfern equation.  相似文献   

7.
Reactions of fresh M(OH)2 (M = Zn2+, Cd2+) precipitate and (RS)-2-methylglutaric acid (H2MGL), 2,2′-bipyridine (bipy), or 1,10-phenanthroline (phen) in aqueous solution at 50°C afforded four new metal–organic complexes [Zn2(bipy)2(H2O)2(MGL)2] (1), [Zn2(phen)2(H2O)(MGL)2] (2), [Cd(bipy)(H2O)(MGL)] · 3H2O (3), and [Cd(phen)(H2O)(MGL)] · 2H2O (4), which were characterized by single crystal X-ray diffraction, IR spectra, TG/DTA analysis as well as fluorescence spectra. In 1, the [Zn(bipy)(H2O)]2+ moieties are linked by R- and S-2-methylglutarate anions to build up the centrosymmetric dinuclear [Zn2(bipy)2(H2O)2(MGL)2] molecules. In 2, the 1-D ribbon-like chains [Zn2(phen)2(H2O)(MGL)2] n can be visualized as from centrosymmetric dinuclear [Zn2(phen)2(H2O)2(MGL)2] units sharing common aqua ligands. Both 3 and 4 exhibit 1-D chains resulting from [Cd(bipy)(H2O)]2+ and [Cd(phen)(H2O)]2+, respectively, bridged alternately by R- and S-2-methylglutarate anions in bis-chelating fashion. The intermolecular and interchain π···π stacking interactions form supramolecular assemblies in 1 and 1-D chains in 24 into 2-D layers. The hydrogen bonded lattice H2O molecules are sandwiched between 2-D layers in 3 and 4. Fluorescence spectra of 14 exhibit LLCT π → π* transitions.  相似文献   

8.
Nitrile-functionalized NCN-pincer complexes of type [MBr(NC-4-C6H2(CH2NMe2)2-2,6)] (6a, M = Pd; 6b, M = Pt) (NCN = [C6H2(CH2NMe2)2-2,6]) are accessible by the reaction of Br-1-NC-4-C6H2(CH2NMe2)2-2,6 (2b) with [Pd2(dba)3 · CHCl3] (5a) (dba = dibenzylidene acetone) and [Pt(tol-4)2(SEt2)]2 (5b) (tol = tolyl), respectively. Complex 6b could successfully be converted to the linear coordination polymer {[Pt(NC-4-C6H2(CH2NMe2)2-2,6)](ClO4)}n (8) upon its reaction with the organometallic heterobimetallic π-tweezer compound {[Ti](μ-σ,π-CCSiMe3)2}AgOClO3 (7) ([Ti] = (η5-C5H4SiMe3)2Ti).The structures of 6a (M = Pd) and 6b (M = Pt) in the solid state are reported. In both complexes the d8-configurated transition metal ions palladium(II) and platinum(II) possess a somewhat distorted square-planar coordination sphere. Coordination number 4 at the group-10 metal atoms M is reached by the coordination of two ortho-substituents Me2NCH2, the NCN ipso-carbon atom and the bromide ligand. The NC group is para-positioned with respect to M.  相似文献   

9.
A series of novel octahedral nickel(II) dithiocarbamate complexes involving bidentate nitrogen-donor ligands (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine) or a tetradentate ligand (cyclam = 1,4,8,11-tetraazacycloteradecane) of the composition [Ni(BzMetdtc)(phen)2]ClO4 (1), [Ni(Pe2dtc)(phen)2]ClO4 (2), [Ni(Bzppzdtc)(phen)2]ClO4 · CHCl3 (3), [Ni(Bzppzdtc)(phen)2](SCN) (4), [Ni(BzMetdtc)(bpy)2]ClO4 · 2H2O (5), [Ni(Pe2dtc)(cyclam)]ClO4 (6), [Ni(BzMetdtc)2(cyclam)] (7), [Ni(Bz2dtc)2(cyclam)] (8) and [Ni(Bz2dtc)2(phen)] (9) (BzMetdtc = N,N-benzyl-methyldithiocarbamate(1-) anion, Pe2dtc = N,N-dipentyldithiocarbamate(1-) anion, Bz2dtc = N,N-dibenzyldithiocarbamate(1-) anion, Bzppzdtc = 4-benzylpiperazinedithiocarbamate(1-) anion), have been synthesized. Spectroscopic (electronic and infrared), magnetic moment and molar conductivity data, and thermal behaviour of the complexes are discussed. Single crystal X-ray analysis of 3 and 8 confirmed a distorted octahedral arrangement in the vicinity of the nickel atom with a N4S2 donor set. They represent the first X-ray structures of such type complexes. The catalytic influence of complexes 2, 3, 6, and 7 on graphite oxidation was studied and discussed.  相似文献   

10.
Five picolinato zinc(II) and cadmium(II) complexes, [Zn(ntb)(pic)]ClO4·CH3OH·2H2O (1), [Zn(bbma)(pic)]NO3·2CH3OH (2), [Cd(ntb)(pic)]ClO4·0.75CH3OH·H2O (3), [Cd2(bbma)2(pic)2](ClO4)2 (4), and [Cd2(bbp)(bbp-H)(pic)2(C2H5OH)]ClO4 (5), have been synthesized, where pic is the anion of picolinic acid, ntb is tris(2-benzimidazolylmethyl)amine, bbma is bis(benzimidazol-2-yl-methyl)amine, and bbp is 2,6-bis(benzimidazol-2-yl)pyridine. All the complexes were characterized by X-ray single-crystal diffraction, elemental analysis, IR, fluorescence spectroscopy, and thermal gravimetric analysis. 13 are mononuclear complexes in which picolinate adopts a N,O-chelating mode. 4 is a symmetrical dinuclear complex bridged by two anti-parallel picolinates in a N,O,O-coordination mode. 5 is also a dinuclear complex in which only one picolinate is a bridge. A 1-D double chain is formed by extensive H-bonds and ππ stacking in 1, while single zigzag chains are formed in 5. Complexes 24 all exhibit 63-hcb 2-D frameworks. They extend to form four-connected 66-dia 3-D topological nets for 2 and 4 and five-connected 46·64-bnn 3-D topological nets for 3. The five complexes show emission maxima in the blue region in the solid state.  相似文献   

11.
Two new sodium hydroxyalkoxycarbonylcyclopentadienide salts Na[rac-CpCO2(CHPh)2OH] (1) and Na[(2S,3S)-CpCO2(CHPh)2OH] (2) were prepared by reaction of NaCp with the five-membered cyclic carbonates cis-4,5-diphenyl-1,3-dioxolan-2-one and (4S,5S)-4,5-diphenyl-1,3-dioxolan-2-one. The reaction of these salts with [Rh(NBD)Cl]2 gave [Rh{rac-CpCO2(CHPh)2OH}(NBD)] (3) and (−)-[Rh{(2S,3S)-CpCO2(CHPh)2OH}(NBD)] (4) whose catalytic activity in the hydroformylation of hex-1-ene and styrene has been investigated and compared with that of the previously reported rhodium complexes [Rh{CpCO2(CHR)2OH}(NBD)] (R=H, Me). In addition we also discuss some preliminary results regarding the behavior of these complexes in the hydrogenation of the same substrates. The reactivity of NaCp toward the six-membered cyclic carbonate 1,3-dioxan-2-one has also been studied and it has been found that the reaction leads to two cyclopentadienide anions [CpCO2(CH2)3OH] (5) and [CpCO2(CH2)3OC(O)O(CH2)3OH] (6) in amounts strictly dependent on the carbonate/NaCp stoichiometric ratio.  相似文献   

12.
The reaction between tridentate NNO donor hydrazone ligands, (E)-2-cyano-N′-(phenyl(pyridin-2-yl)methylene)acetohydrazide (HL1) and (E)-2-cyano-N′-(1-(pyridin-2-yl)ethylidene)acetohydrazide (HL2), with MnCl2·4H2O in methanol resulted in [Mn(HL1)Cl2(CH3OH)] (1) and [Mn(HL2)Cl2(CH3OH)] (2). Molecular structures of the complexes were determined by single-crystal X-ray diffraction. All of the investigated compounds were further characterized by elemental analysis, FT-IR, TGA, and UV–Vis spectroscopy. These complexes were used as catalysts for olefin oxidation in the presence of tert-butylhydroperoxide (TBHP) as an oxidant. Under similar experimental conditions with equal manganese loading, the presence of [Mn(HL2)Cl2(CH3OH)] (2) resulted in higher conversion than [Mn(HL1)Cl2(CH3OH)] (1).  相似文献   

13.
Reactions of the labile compound [Re2(CO)8(MeCN)2] with thiazole and 4-methylthiazole in refluxing benzene afforded the new compounds [Re2(CO)7{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}(μ-H)] (1, R = H; 2, R = CH3), [Re2(CO)6{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}2(μ-H)] (3, R = H; 4, R = CH3) and fac-[Re(CO)3(Cl){η1-NC3H2(4-R)S}2] (5, R = H; 6, R = CH3). Compounds 1 and 2 contain two rhenium atoms, one bridging thiazolide ligand, coordinated through the C(2) and N atoms and a η1-thiazole ligand coordinated through the nitrogen atom to the same Re as the thiazolide nitrogen. Compounds 3 and 4 contain a Re2(CO)6 group with one bridging thiazolide ligand coordinated through the C(2) and N atoms and two N-coordinated η1-thiazole ligands, each coordinated to one Re atom. A hydride ligand, formed by oxidative-addition of C(2)-H bond of the ligand, bridges Re-Re bond opposite the thiazolide ligand in compounds 1-4. Compound 5 contains a single rhenium atom with three carbonyl ligands, two N-coordinated η1-thiazole ligands and a terminal Cl ligand. Treatment of both 1 and 2 with 5 equiv. of thiazole and 4-methylthiazole in the presence of Me3NO in refluxing benzene afforded 3 and 4, respectively. Further activation of the coordinated η1-thiazole ligands in 1-4 is, however, unsuccessful and results only nonspecific decomposition. The single-crystal XRD structures of 1-5 are reported.  相似文献   

14.
Reaction of the N-(2-pyridyl)carbonylaniline ligand (L) with Cu(NO3)2, Cu(ClO4)2, Zn(ClO4)2, Ni(NO3)2 and PdCl2 gives complexes with stoichiometry [Cu(L)2(H2O)2](NO3)2, [Cu(L)2(H2O)2](ClO4)2, [Zn(L)2(H2O)2] (ClO4)2, [Ni(L)2(H2O)Cl](NO3) and PdLCl2. The new complexes were characterized by elemental analyses and infrared spectra. The crystal structures of [Cu(L)2(H2O)2](NO3)2, [Cu(L)2(H2O)2](ClO4)2, and [Zn(L)2(H2O)2](ClO4)2 were determined by X-ray crystallography. The cation complexes [M(L)2(H2O)2] contain copper(II) and zinc(II) with distorted octahedral geometry with two N-(2-pyridyl)carbonylaniline (L) ligands occupying the equatorial sites. The hexa-coordinated metal atoms are bonded to two pyridinic nitrogens, two carbonyl oxygens and two water molecules occupying the axial sites. Both the coordinated water molecules and uncoordinated amide NH groups of the N-(2-pyridyl)carbonylaniline (L) ligands are involved in hydrogen bonding, resulting in infinite hydrogen-bonded chains running in one and two-dimensions.  相似文献   

15.
Five new copper(II) complexes [Cu(dbsf)(H2O)]n · 0.5n(i-C3H7OH) (1), [Cu(dbsf)(4,4′-bpy)0.5]n · nH2O (2), [Cu(dbsf)(2,2′-bpy)(H2O)]2 · (n-C3H7OH) · 0.5H2O (3), [Cu(dbsf)(phen)(H2O)]2 · 1.5H2O (4) and [Cu(dbsf)(2,2′-bpy)(H2O)]n · n(i-C3H7OH) (5) (H2dbsf = 4,4′-dicarboxybiphenyl sulfone, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, i-C3H7OH = isopropanol, n-C3H7OH = n-propanol) have been synthesized under hydro/solvothermal conditions. All of the complexes are assembled from V-shaped building blocks, [Cu(dbsf)]. Complex 1 is composed of 1D double-chains. In complex 2, dbsf2− ligands and 4,4′-bpy ligands connect Cu(II) ions into catenane-like 2D layers. These catenane-like 2D layers stack in an ABAB fashion to form a 3D supramolecular network. Complexes 3 and 4 are 0D dimers, in which two [Cu(dbsf)] units encircle to form dimetal macrocyclic molecules. However, in complex 5, the V-shaped building blocks [Cu(dbsf)] are joined head-to-tail, resulting in the formation of infinite tooth-like chains. The different structures of complexes 3 and 5 may be attributed to the different solvent molecules included.  相似文献   

16.
Using 4-methylbenzenethiolates of Zn or Cd as precursors and 4,4′-bipyridine (4,4′-bpy) as bridges, we have synthesized three new Zn(II)/Cd(II) coordination polymers, {[Cd(4,4′-bpy)2(NCS)2] · 2(SC6H4CH3-4)2} n (1), {[Zn(4,4′-bpy)(SC6H4CH3-4)2] · DMF} n (2) and {[Zn(4,4′-bpy)(SC6H4CH3-4)2] · H2O · 0.5CH3OH} n (3). Compound 1 is a 2-D sheet-like square polymer in which four 4,4′-bpy ligands and two isothiocyanate ligands complete the octahedral Cd(II) coordination sphere. Compounds 2 and 3 have similar coordination around Zn(II), but have different polymer structures. In 2, Zn(II) centers are linked via a bidentate 4,4′-bipyridine to form 1-D twisted arched chains, which is a new structural type for Zn(II). Compound 3 has 1-D zigzag chains. The 2-D sheets in 1 and 1-D chains in 2 and 3 are assembled via intermolecular C–H ··· π and C–H ··· S interactions into 3-D supramolecular networks. C–H ··· S interactions are a vital factor in constructing the sulfur-containing coordination polymers. Different coordination modes and packing schemes in 13 show that the guest molecule has a critical influence on formation of polymers.  相似文献   

17.
A novel polyoxometalate {[Ni(enMe)2]2[Ni(enMe)2(H2O)]2[As2W18Ni4(enMe)2O68]}·2H3O·2H2O (1) (enMe = 1,2-propylenediamine) has been synthesized and characterized, which is the first high-dimensional structure constructed from sandwich-type transition metal substituted tungstates and transition metal coordination groups.  相似文献   

18.
A new ferrocene-containing dicarboxylate ligand, L = 5-ferrocene-1,3-benzenedicarboxylic acid, has been prepared. Self-assembly of L, M(II) salts (M = Co and Zn) and chelating ligands dpa or phen (dpa = 2,2′-dipyridylamine and phen = 1,10-phen) gave rise to four new coordination polymers {[Co(L)(dpa)] · 2MeOH}n (1), {[Zn(L)(dpa)] · 2MeOH}n (2), {[Co(L)(phen)(H2O)] · MeOH} (3), [Zn(L)(phen)(H2O)] · MeOH (4). The isostructural complexes 1 and 2 possess 1D helical chain structures with 21 screw axes along the b-direction, and the right- and left-handed helical chains are alternate arrayed into 2D layer structures through hydrogen-bonding interactions; while isostructural complexes 3 and 4 are 1D linear chain structures with phen and ferrocene groups of L as pendants hanging on the different sides of the main chain. A structural comparison of complexes 14 demonstrated that the characteristics of subsidiary ligands and slight difference in coordination models of L play very important role in the construction of the complexes. In addition, the redox properties of complexes 14, as well as the magnetic properties of complexes 1 and 3 are also investigated.  相似文献   

19.
Interaction of copper(II) salts with 2,2′-dipyridylamine (1), N-cyclohexylmethyl-2,2′-dipyridylamine (2), di-2-pyridylaminomethylbenzene (3), 1,2-bis(di-2-pyridylaminomethyl)-benzene (4), 1,3-bis(di-2-pyridylaminomethyl)benzene (5), 1,4-bis(di-2-pyridylaminomethyl)benzene (6), 1,3,5-tris(di-2-pyridylaminomethyl)benzene (7) and 1,2,4,5-tetrakis(di-2-pyridylaminomethyl)benzene (8) has yielded the following complexes: [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · H2O, [Cu2(4)(NO3)4], [Cu2(5)(NO3)4] · 2CH3OH, [Cu2(6)(CH3OH)2(NO3)4], [Cu4(8)](NO3)4] · 4H2O while complexation of palladium(II) with 1, 4, 5 and 6 gave [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)Cl4], [Pd2(4)(OAc)4], [Pd2(5)Cl4], [Pd2(6)Cl4] and [Pd2(6)(OAc)4] · CH2Cl2, respectively. X-ray structures of [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · 2C2H5OH, [Cu2(6)(CH3OH)2(NO3)4], [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)(OAc)4] · 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2 are reported. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a diverse range of coordination geometries and lattice arrangements, with the structures of [Pd2(4)(OAc)4· 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2, incorporating the isomeric ligands 4 and 6, showing some common features. Liquid–liquid (H2O/CHCl3) extraction experiments involving copper(II) and 13, 5, 7and 8 show that the degree of extraction depends markedly on the number of dpa-subunits (and concomitant lipophilicity) of the ligand employed with the tetrakis-dpa derivative 8 acting as the most efficient extractant of the six ligand systems investigated.  相似文献   

20.
New hexa-coordinated Ru(II) complexes of the type [RuCl2(DMSO)2(diamine)] (diamine = o-phenylenediamine and ethylenediamine) have been prepared by reacting cis-[RuCl2(DMSO)4] with Schiff bases (H2sal-en, 1; H2nap-en, 2; H2sal-o-pdn, 3; H2nap-o-pdn, 4) in a 1:1 ratio. The ligands, which were expected to act as tetradentate (N2O2) chelates under the normal reaction conditions, were found to undergo hydrolytic cleavage to form the diamine and the corresponding aldehyde. All the complexes have been characterized by analytical and spectroscopic (IR, electronic and1H NMR) data. Single-crystal X-ray analysis of the complex [RuCl2(DMSO)2(o-pndn)] revealed that the coordination environment around the ruthenium metal consists of a N2S2Cl2 octahedron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号