首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polynuclear Pd(II) and Ni(II) complexes of macrocyclic polyamine 3,6,9,16,19,22‐hexaazatricyclo[22.2.2.211,14]‐triaconta 11,13,24,26(l),27,29‐hexaene (L) in solution were investigated by electrospray ionization mass spectrometry (ESIMS). For methanol solution of complexes M2LX4 (M = Pd(II) and Ni(II), X= Cl and I), two main clusters of peaks were observed which can be assigned to [M2LX3]+ and [M2LX2]2+. When Pd2LCl4 was treated with 2 or 4 mol of AgNO3, it gave rise formation of Pd2LCl2 (NO3)2 · H2O and [Pd2L(H2O)m(NO3)n](4‐n)+, respectively. ESMS spectra show that the dissociation of the former in the ionization process gave peaks of [Pd2LCl2]2+ and [(Pd2LCl2)NO3]+, while dissociation of the later gave the peaks of [Pd2L(CH3CO2)2]2+ and [Pd2L(CH3CO2)2](NO3) + in the presence of acetic acid. Similar species were observed for Pd2LI4 when treated with 4 mol of AgNO3. When [Pd2L · (H2O)m(NO3)n](4‐n)+ reacted with 2 mol of oxalate anions at 40°C, [Pd4L2(C2O4)2(NO3)2]2+ and [Pd4L2(C2O4)2 (NO3)]3+ were detected. This implies the formation of square‐planar molecular box Pd4L2(C2O4)2(NO3)4 in which C2O4? may act as bridging ligands as confirmed by crystal structure analysis. The dissociation form and the stability of complex cations in gaseous state are also discussed. This work provides an excellent example of the usefulness of ESIMS in the identification of metal complexes in solution.  相似文献   

2.
Two series of bonding isomers of Ni(II) coordination compounds with tetradentate quasimacrocyclic ligands based on S-substituted isothiocarbohydrazides were characterized by electron impact (EI) mass spectrometry and by tandem mass spectrometry methods. Conventional EI mass spectra were more isomer specific than metastable ion (MI) and collision induced dissociation (CID) mass spectra of the molecular ions. The MI (and CID) mass spectra of the isomers were very similar. This effect resulted from a facile randomization of Ni–N bonds in the ions possessing low internal energies, prior to their dissociation. The compounds were found to be convenient precursors for coordinatively unsaturated metal-containing ions, [NiLn]+ and [RNiLn]+ (n = 1, 2; L = NCCH3, NCSCH3; R = OH, NO). Most of these species had a structure of mono- or disolvated nickel ion. The dissociation of [HONiNCCH3]+ ions was consistent with the formation of two isomers: one corresponding to the [HONi]+ ion solvated by acetonitrile and the other is a complex of H2O with [NiNCCH2]+. A structure of [HO,Ni,(NCCH3)2]+ ions was best represented by a five-membered cycle formed by two acetonitrile units and the metal atom with the OH group attached to one of the nitrogen atoms.  相似文献   

3.
Per-O-acetylated methyl glycosides of D -xylan-type di- and trisaccharides were studied by mass-analysed ion kinetic energy (MIKE) and collisionally induced dissociation (CID) mass Spectrometry using protonated ammonia and methylamine, respectively, as reaction gases in chemical ionization (CI). The oligosaccharides form abundant cluster ions, [M + NH4]+ or [M + CH3NH3]+, and the main fragmentation of these ions in the MIKE and CID spectra is the cleavage of interglycosidic linkages. Thus, CI (NH3) or CI (CH3NH2) spectra in combination with the MIKE or CID spectra allow the molecular masses, the masses of monosaccharide units and the branching point in oligosaccharides to be established. In the case of disaccharides, it is possible to distinguish the (1 → 2) linkage from the other types of linkages.  相似文献   

4.
Bibracchial lariat ethers L3 and L4, derived from the condensation of N,N′-bis(2-aminobenzyl)-1,10-diaza-15-crown-5 or N,N′-bis(2-aminobenzyl)-4,13-diaza-18-crown-6 with salicylaldehyde, form binuclear complexes with Co(II), Ni(II), Cu(II) and Zn(II). Our studies show that the different denticity and crown moiety size of the two related receptors give rise to important differences on the structures of the corresponding complexes. Single crystal X-ray diffraction analysis shows that the [Ni2(L3)(H2O)2]2+ and [Cu2(L3)(NO3)]+ complexes constitute a rare example in which an oxygen atom of the crown moiety is bridging the two six coordinate metal ions. In contrast, none of the oxygen atoms of the crown moiety is acting as a bridging donor atom in the [Co2(L4)(CH3CN)2]2+, [Cu2(L4)]2+ and [Zn2(L4)]2+ complexes. This is attributed to the larger size the crown moiety and the higher denticity of L4 compared to L3. In [Co2(L4)(CH3CN)2]2+ the metal ions show a distorted octahedral coordination, while in the Cu(II) and Zn(II) analogues the metal ions are five-coordinated in a distorted trigonal bipyramidal environment. In [Cu2(L3)(NO3)]+ the coordinated nitrate anion acts as a bidentate bridging ligand, which results in the formation of a 1D coordination polymer.  相似文献   

5.
Ab initio molecular orbital calculations with moderately large polarization basis sets and including valence-electron correlation have been used to examine the structure and dissociation mechanisms of protonated methanol [CH3OH2]+. Stable isomers and transition structures have been characterized using gradient techniques. Protonated methanol is found to be the only stable isomer in the [CH5O]+ potential surface. There is no evidence for a tightly-bound complex, [HOCH2]+…?H2, analogous to the preferred structure [CH3]+…?H2 of [CH5]+. Protonated methanol is found to possess a pyramidal arrangement of bonds at the oxygen atom with a barrier to inversion of 8kJ mol?1. The lowest energy fragmentation pathways are dissociation into methyl cation and water (predicted to require 284 kJ mol?1 with zero reverse activation energy) and loss of molecular hydrogen (endothermic by 138 kJ mol?1 but with a reverse activation barrier of 149 kJ mol?1). The results offer a possible explanation as to why production of [CH2OH]+ from the reaction of methyl cation with water is not observed. Other dissociation processes examined include loss of a hydrogen atom to yield the methylenoxonium radical cation or methanol radical cation (requiring 441 and 490 kJ mol?1, respectively) and loss of a proton to yield neutral methanol (requiring 784 kJ mol?1).  相似文献   

6.
Complexes of Mn2+ with deprotonated GlyGly are investigated by sustained off‐resonance irradiation collision‐induced dissociation (SORI‐CID), infrared multiple‐photon dissociation spectroscopy, ion–molecule reactions, and computational methods. Singly [Mnn(GlyGly‐H)2n?1]+ and doubly [Mnn+1(GlyGly‐H)2n]2+ charged clusters are formed from aqueous solutions of MnCl2 and GlyGly by electrospray ionization. The most intense ion produced was the singly charged [M2(GlyGly‐H)3]+ cluster. Singly charged clusters show extensive fragmentations of small neutral molecules such as water and carbon dioxide as well as dissociation pathways related to the loss of NH2CHCO and GlyGly. For the doubly charged clusters, however, loss of GlyGly is observed as the main dissociation pathway. Structure elucidation of [Mn3(GlyGly‐H)4]2+ clusters has also been done by IRMPD spectroscopy as well as DFT calculations. It is shown that the lowest energy structure of the [Mn3(GlyGly‐H)4]2+ cluster is deprotonated at all carboxylic acid groups and metal ions are coordinated with carbonyl oxygen atoms, and that all amine nitrogen atoms are hydrogen bonded to the amide hydrogen. A comparison of the calculated high‐spin (sextet) and low‐spin (quartet) state structures of [Mn3(GlyGly‐H)4]2+ is provided. IRMPD spectroscopic results are in agreement with the lowest energy high‐spin structure computed. Also, the gas‐phase reactivity of these complexes towards neutral CO and water was investigated. The parent complexes did not add any water or CO, presumably due to saturation at the metal cation. However, once some of the ligand was removed via CO2 laser IRMPD, water was seen to add to the complex. These results are consistent with high‐spin Mn2+ complexes.  相似文献   

7.
MINDO/3 calculations for singlet and triplet doubly charged benzene [C6H6]2+ are in satisfactory agreement with the experimentally determined values of the vertical double ionization energy of benzene; calculations for straight chain isomeric structures are consistent with the observed kinetic energy release on fragmentation to [C5H3]+ and [CH3]+. Symmetrical doubly charged benzene ions relax to a less symmetrical cyclic structure having sufficient internal energy to fragment by ring opening and hydrogen transfer towards the ends of the carbon chain. Fragmentation of [CH3C4CH3]2+ to [CH3C4]+ and [CH3]+ is a relatively high energy process (A), whereas both (B): [CH3CHC3CH2]2+ to [CHC3CH2]+ and [CH3]+ and (C): [CH3CHCCHCCH]2+ to [CHCCHCCH]+ and [CH3]+ may be exothermic processes from doubly charged benzene. Furthermore, the calculated energy for the reverse of process (A) is less than the experimentally observed kinetic energy released, whereas larger energies for the reverse of processes B and C are predicted. Heats of formation of homologous series [HCn]+, [CH3Cn]+, [CH2Cn?2CH]+, [CH3Cn?2CH2]+ and [CH2?CHCn?3CH2]+ with 1 < n < 6 are calculated to aid prediction of the most stable products of fragmentation of doubly charged cations. The homologous series [CH2Cn?2CH]+ is relatively stable and may account for ready fragmentation of doubly charged ions to [CnH3]+; alternatively the symmetrical [C5H3]+ ion [CHCCHCCH]+ may be formed. Dicoordinate carbon chains appear to be important stabilizing features for both cations and dications.  相似文献   

8.
Reported here is a comparison of electron transfer dissociation (ETD) and collision‐induced dissociation (CID) of solvent‐coordinated dipositive uranyl and plutonyl ions generated by electrospray ionization. Fundamental differences between the ETD and CID processes are apparent, as are differences between the intrinsic chemistries of uranyl and plutonyl. Reduction of both charge and oxidation state, which is inherent in ETD activation of [AnVIO2(CH3COCH3)4]2+, [AnVIO2(CH3CN)4]2, [UVIO2(CH3COCH3)5]2+ and [UVIO2(CH3CN)5]2+ (An = U or Pu), is accompanied by ligand loss. Resulting low‐coordinate uranyl(V) complexes add O2, whereas plutonyl(V) complexes do not. In contrast, CID of the same complexes generates predominantly doubly‐charged products through loss of coordinating ligands. Singly‐charged CID products of [UVIO2(CH3COCH3)4,5]2+, [UVIO2(CH3CN)4,5]2+ and [PuVIO2(CH3CN)4]2+ retain the hexavalent metal oxidation state with the addition of hydroxide or acetone enolate anion ligands. However, CID of [PuVIO2(CH3COCH3)4]2+ generates monopositive plutonyl(V) complexes, reflecting relatively more facile reduction of PuVI to PuV. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Bivalent transition metal hydrazone complexes of the composition [Ni(L1)2] (1), [Co(L1)2] (2), [Ni(L2)2] (3) and [Co(L2)2] (4) have been synthesised from the reactions of [MCl2(PPh3)2] (where M = Ni or Co) with hydrazones derived from 2-acetyl pyridine and carboxylic acid hydrazides of benzhydrazide (HL1) or thiophene-2-carboxylic acid hydrazide (HL2), respectively. Structure of the ligands HL1 and HL2 and their corresponding complexes with Ni(II) and Co(II) ions were proposed based on the elemental analysis, infrared and 1H NMR spectral methods. Single crystal X-ray diffraction study of complex 1 revealed a distorted octahedral geometry around the metal ion provided by two units of the ligand. To explore the potential medicinal value of the new complexes, binding interaction of all the complexes with bovine serum albumin (BSA) was studied at normal physiological conditions using fluorescence and UV-Vis spectral techniques. The number of binding sites (n) and binding constant (Ka) were calculated according to the double logarithm regression equation. The results of synchronous fluorescence spectrum showed that binding of metal hydrazones with BSA induced conformational changes in BSA. The in vitro antioxidant and antimicrobial potentials of the new chelates were also carried out.  相似文献   

10.
Double-helical [M2L2] n+, triple-helical [M2L3] n+, and toroidal [M3L3] n+ (M = Cu, Co, Fe, Ni, La, Eu, Gd, Tb, or Lu) supramolecular complexes have been fully characterized by ion spray mass spectrometry (IS-MS). The IS-MS spectra from pure acetonitrile solutions reflect the nature of the cations present in solution with conservation of the charge state and allow an efficient qualitative speciation of the compounds. The mass spectrometry results can be correlated with other powerful techniques (nuclear magnetic resonance and electronic spectroscopy) for the characterization of supramolecular complexes in solution, Structural information is obtained by collision-induced dissociation, which strongly depends on the metal ions used in the supramolecular complexes and on the various connectivities and topologies of the ligands. When the ligand contains 3,5dimethoxybenzyl groups bound to the benzimidazole rings, the partial fragmentation of the complexes is associated with a decrease of the total charge of the complexes and the appearance of the characteristic fragment at m/z 151 that corresponds to the 3,5-dimethoxybenzyl cation. A detailed analysis of the fragmentation pathways of these supramolecular complexes suggests that the metal-nitrogen coordination bonds are very strong in the gas phase.  相似文献   

11.
New complexes of the general types HCo(NCS)3 ·nL, HCoX 2(NCS) ·nL and HCo(NCS)2I ·nL (whereX=Cl, Br, I;L=diethyl ether, pyridine, aniline;n=1.5, 2, 3, 3.5) have been prepared and characterized. The magnetic and spectroscopic data indicate that pseudotetrahedral [Co(NCS)3 L]?, [CoX 2(NCS)L]? and [Co(NCS)2IL]? anions are present in the solid pyridine and aniline compounds.  相似文献   

12.
The lowest electronic excited state of the complexes [Ru(2,2′-bipyridine)3]2+, fac-[ClRe (CO)3(2,2′-bipyridine)], and fac-[(pyridine) Re (CO)3(2,2′-bipyridine)]+ can be quenched by methyl viologen, MV2+, N,N′-dimethyl-4,4′-bipyridinium, in fluid solutions. The quenching obeys Stern—Volmer kinetics as deduced from plots of relative luminescence quantum yield vs [MV2+], and the data are consistent with a quenching process that is essentially diffusion controlled. Pulsed laser excitation (18 ns, 354.7 nm frequency tripled Nd: YAG) of the metal complexes in the presence of MV2+ shows that a detectable fraction of the quenching results in net electron transfer to form MV+. The MV+ is detectable by resonance Raman scattering from the trailing portion of the excitation pulse. Excited state electron transfer to MV2+ from a photo-excited complex anchored to SiO2 has also been detected by transient Raman spectroscopy. High surface area SiO2 was functionalized by reaction with 4-[2-(trimethoxysilyl)ethyl]pyridine to give [SiO2]-SiEtpyr. Reaction of [SiO2]-SiEtpyr with [(CH3CN)Re(CO)3(2,2′-bipyridine)]+ then yields [SiO2]-[(SiEtpyr) Re (CO)3 (2,2′-bipyridine)]+. Electron transfer quenching of the photo-excited immobilized Re complex occurs when suspended in CH3CN solutions of MV2+ to yield MV+ as detected by resonance Raman scattering and by lifetime attenuation in the presence of MV2+.  相似文献   

13.
A series of binuclear Co(II), Ni(II) and Cu(II) complexes were synthesized by the template condensation of glyoxal, biacetyl or benzil bis-hydrazide, 2,6-diformyl-4-methylphenol and Co(II), Ni(II) or Cu(II) chloride in a 2:2:2 M ratio in ethanol. These 22-membered macrocyclic complexes were characterized by elemental analyses, magnetic, molar conductance, spectral, thermal and fluorescence studies. Elemental analyses suggest the complexes have a 2:1 stoichiometry of the type [M2LX2nH2O and [Ni2LX22H2O]·nH2O (where M = Co(II) and Cu(II); L = H2L1, H2L2 and H2L3; X = Cl; n = 2). From the spectroscopic and magnetic studies, it has been concluded that the Co(II) and Cu(II) complexes display a five coordinated square pyramidal geometry and the Ni(II) complexes have a six coordinated octahedral geometry. The Schiff bases and their metal complexes have also been screened for their antibacterial and antifungal activities by the MIC method.  相似文献   

14.
Three newly designed containing‐PMBP N2O2‐donors complexes, [Co(L1)(CH3OH)2] ( 1 ), [{Zn(L2)(CH3OH)(H2O)}3] ( 2 ) and [Cu4(L2)4]?2CHCl3 ( 3 ), have been synthesized and structurally characterized using elemental analyses, infrared and UV–visible spectroscopies and single‐crystal X‐ray diffraction. X‐ray crystal structure determinations revealed that 1 consists of one Co(II) atom, one completely deprotonated (L1)2? unit and two coordinated methanol molecules. Complex 2 consists of three Zn(II) atoms, three completely deprotonated (L2)2? units, three coordinated methanol molecules and three coordinated water molecules. However, 3 includes four Cu(II) atoms, four completely deprotonated (L2)2? units and two crystallization chloroform molecules. The Co(II) and Zn(II) atoms in the structures of 1 and 2 adopt slightly distorted octahedral geometries. While, Cu(II) atoms in 3 can be best described as adopting slightly distorted square planar geometries. Complex 2 is a novel structure, and the ratio of H2L2 to Zn(II) atom is 3:3. In addition, two‐, three‐ and three‐dimensional supramolecular structures were constructed for 1 , 2 and 3 . Most importantly, Hirshfeld surface analysis of 1 , 2 and 3 was conducted and fluorescence properties were investigated.  相似文献   

15.
The two title compounds were prepared from the ligand pydc with cobalt(II) acetate in the presence of L1 and L2 (L1 = 1,3-bis(4-pyridyl)propane, L2 = 3-amino-1H-1,2,4-triazole, pydc = 2,6-pyridinedicarboxylic acid). The complexes were characterized by elemental analysis, IR spectrum and single crystal X-ray diffraction. Single crystal analysis shows that in two complexes coordination number around Co atom is six with distorted octahedral geometry, and both two complexes consist of ion pairs containing cationic [Co(H2O) n ]2+ and anionic [Co(pydc)2]2- units.  相似文献   

16.
As an alternative method, matrix-assisted laser desorption/ionization with Fourier transform mass spectrometry (MALDI-FTMS) has been successfully used to detect and identify free radical adducts with small molecular weights of hydroxyl and 2-cyano-2-propyl radicals trapped with 5,5-dimethylpyrroline N-oxide (DMPO). The detection and identification by MS/MS experiments using sustained offresonance irradiation collision-induced dissociation (SORI-CID) of [(DMPO+·OH-·H)+H^+] (m/z 130.0868) and [DMPO+2 ·CH(CH3)2CN+H^+] (m/z 250.1917) have demonstrated that MALDI-FTMS could be an effective method for detection and identification of free radical adducts. Other radical adducts have been also detected and identified. The approach of MALDI-FTMS is simple, fast, and sensitive which has potential for high-throughput analysis.  相似文献   

17.
By combining results from a variety of mass spectrometric techniques (metastable ion, collisional activation, collision-induced dissociative ionization, neutralization-reionization spectrometry, 2H, 13C and 18O isotopic labelling and appearance energy measurements) and high-level ab initio molecular orbital calculations, the potential energy surface of the [CH5NO]+ ˙ system has been explored. The calculations show that at least nine stable isomers exist. These include the conventional species [CH3ONH2]+ ˙ and [HO? CH2? NH2]+ ˙, the distonic ions [O? CH2? NH3]+ ˙, [O? NH2? CH3]+ ˙, [CH2? O(H)? NH2]+ ˙, [HO? NH2? CH2]+ ˙, and the ion-dipole complex CH2?NH2+ …? OH˙. Surprisingly the distonic ion [CH2? O? NH3]+ ˙ was found not to be a stable species but to dissociate spontaneously to CH2?O + NH3+ ˙. The most stable isomer is the hydrogen-bridged radical cation [H? C?O …? H …? NH3]+ ˙ which is best viewed as an immonium cation interacting with the formyl dipole. The related species [CH2?O …? H …? NH2]+ ˙, in which an ammonium radical cation interacts with the formaldehyde dipole is also a very stable ion. It is generated by loss of CO from ionized methyl carbamate, H2N? C(?O)? OCH3 and the proposed mechanism involves a 1,4-H shift followed by intramolecular ‘dictation’ and CO extrusion. The [CH2?O …? H …? NH2]+ ˙ product ions fragment exothermically, but via a barrier, to NH4+ ˙ HCO…? and to H3N? C(H)?O+ ˙ H˙. Metastable ions [CH3ONH2]+…? dissociate, via a large barrier, to CH2?O + NH3+ + and to [CH2NH2]+ + OH˙ but not to CH2?O+ ˙ + NH3. The former reaction proceeds via a 1,3-H shift after which dissociation takes place immediately. Loss of OH˙ proceeds formally via a 1,2-CH3 shift to produce excited [O? NH2? CH3]+ ˙, which rearranges to excited [HO? NH2? CH2]+ ˙ via a 1,3-H shift after which dissociation follows.  相似文献   

18.
2‐Mercaptopyridine N ‐oxide (pyrithione, PTOH) along with several transition metal ions forms coordination compounds displaying notable biological activities. Gas‐phase complexes formed between pyrithione and manganese (II), cobalt (II), nickel (II), copper (II), and zinc (II) were investigated by infusion in the electrospray source of a quadrupole‐time of flight mass spectrometer. Remarkably, positive ion mode spectra displayed the singly charged metal adduct ion [C10H8MN2O2S2]2+ ([M(PTO)2]+• or [M(DPTO)]+•), where DPTO is dipyrithione, 2,2′‐dithiobis(pyridine N ‐oxide), among the most abundant peaks, implying a change in the oxidation state of whether the metal ion or the ligands. In addition, doubly charged ions were recognized as metal adduct ions containing DPTO ligands, [M(DPTO)n]2+. Generation of [M(PTO)2]+• / [M(DPTO)]+• could be traced by CID of [M(DPTO)2]2+, by observation of the sequential losses of a charged (PTO+) and a radical (PTO) deprotonated pyrithione ligand. The fragmentation pathways of [M(PTO)2]+• / [M(DPTO)]+• were compared among the different metal ions, and some common features were noticed. Density functional theory (DFT) calculations were employed to study the structures of the observed adduct ions, and especially, to decide in the adduct ion [M(PTO)2]+• / [M(DPTO)]+• whether the ligands are 2 deprotonated pyrithiones or a single dipyrithione as well as the oxidation state of the metal ion in the complex. Characterization of gas‐phase pyrithione metal ion complexes becomes important, especially taking into account the presence of a redox‐active ligand in the complexes, because redox state changes that produce new species can have a marked effect on the overall toxicological/biological response elicited by the metal system.  相似文献   

19.
Cluster size distribution and collision-induced dissociation (CID) studies of protonated methanol and protonated methanol—water clusters yield information on the structure and energetics of such ions. Ions were formed at atmospheric pressure in a corona discharge source, and were subjected to CID in the center quadrupole of a triple quadrupole mass spectrometer. Cluster ions containing up to 13 molecules of methanol and/or water were observed and examined using CID experiments. The CID of all (CH3OH)n · H2O · H+ clusters, where n ? 8, showed that water loss was statistically favored over methanol loss and that the preferred dissociation channel involved loss of water with methanol molecules. These results support a model employing a chain of hydrogen-bonded solvent molecules rather than one in which fused rings of ligands surround a central hydronium ion. However, CID of larger clusters, where n ? 9, showed that loss of one methanol was equal to or less than loss of water, reflecting a change in structure.  相似文献   

20.
A study was carried out on the fragmentation of 12 protonated O,O-dimethyl O-aryl phosphorothionates by tandem quadrupole mass spectrometry. Some of the studied compounds are used in agriculture as pesticides. Energy-resolved and pressure-resolved experiments were performed on the [M + H]+ ions to investigate the dissociation behavior of the ions with various amounts of internal energy. On collisionally activated dissociation, the [M + H]+ ions decompose to yield the [M + H ? CH3OH]+, (CH3O)2PS+ (m/z 125), and (CH3O)2PO+ (m/z 109) ions as major fragments. The ions [M + H ? CH3OH]+ and (CH3O)2PS+ probably arise from the [M + H]+ ions of the O,O-dimethyl O-aryl phosphorothionates with the proton on the sulfur or on the oxygen of the phenoxy group. The origin of the hydroxy proton of the methanol fragment was in many cases, surprisingly, the phenyl group and not the reagent gas. This was confirmed by using deuterated isobutane, C4D10, as reagent gas in Cl. The fragment ions (CH3O)2PO+ and [ZPhS]+ are the results of thiono-thiolo rearrangement reaction. The precursor ion for the ion (CH3O)2PO+ arises from most compounds upon chemical ionization, whereas the precursor ion for the ion [ZPhS]+ arises only from a few compounds upon chemical ionization. The observed fragments imply that several sites carry the extra proton and that these sites get the proton usually upon ionization. The stability order and some characteristics of three protomers of O,O-dimethyl O-phenyl phosphorothionate were investigated by ab initio calculations at the RHF/3-21G* level of theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号