首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 150 毫秒
1.
具有特异电学性质的分子结的制备及电子输运特性研究是分子电子学领域中的主要内容,对构筑分子电子器件具有重要意义.但是,由于分子结的尺度通常在100nm以下,这使得分子结的低缺陷制备和准确有效的电学特性研究面临困难.目前,自组装方法已经成为降低分子结缺陷的主要手段,  相似文献   

2.
许晓娜  韩宾  于曦  朱艳英 《化学学报》2019,77(6):485-499
分子尺度电子学通过构筑基于微尺度电极和单个分子或者少量分子聚集体的"电极-分子-电极"结,研究跨越分子的电荷输运性质.它将分子本征化学特性与器件构筑相结合,考察分子的理化特性与电荷输运的构效关系,揭示微尺度的量子输运动力学原理,并探索基于分子的功能电子器件.是一个集化学、物理学与微电子学为一体的交叉学科.总结整理了分子电子学近些年在器件制备、输运机理及应用方面部分有代表性的进展.  相似文献   

3.
分子电子学是研究单分子器件的构筑、性质以及功能调控的一门新兴学科。其中,金属/分子/金属结的构筑和表征是现阶段分子电子学的主要研究内容。裂结技术是当前分子电子学研究的主要实验方法,主要包括机械可控裂结技术和扫描隧道显微镜裂结技术。本文对裂结技术进行了介绍,并对近年来利用这些技术,在单分子尺度化学反应的检测和动力学研究,以及将这些技术与溶液环境、静电场、电化学门控等方法相结合,调控单分子器件的电输运性质等方面所取得的进展进行了概述。  相似文献   

4.
金属/分子/金属结是分子电子学中的基本单元.根据电子的相位是否发生改变,分子结中的电子输运可以分为相干输运和非相干输运两类.在实验上,分子结的表征方法可以分为电学性质表征和非电学性质表征两类.本文借助能级图,首先对分子结的电子输运机理作了简明解释.在此基础上,结合文献报道和本课题组此前的工作,对分子结的一些常用电学表征方法,包括电流-电压特性曲线、电流-时间曲线、电导统计柱状图、转变电压谱、散粒噪声测试、非弹性电子隧道谱和热电效应法进行了介绍.  相似文献   

5.
脱氧核糖核酸分子是一类重要的生物分子, 在生物医学领域之外, 该类分子还因为其所具有的独特的双螺旋结构以及长程输运能力, 在分子电子学领域也引起了研究者的极大兴趣. 本文综述了近年来基于纳米间隔电极对构筑分子结这一研究范式, 在构筑脱氧核糖核酸分子结以及研究后者的电输运性质等方面的研究进展. 依据研究者所采用的不同纳米间隔电极对构筑技术, 主要围绕裂结法和切割法两大类研究方法所展开. 前者主要包括扫描隧道显微镜裂结法、导电原子力显微镜法、机械可控裂结法, 后者则主要包括碳纳米管切割法、石墨烯切割法、硅纳米线切割法. 在梳理不同实验方法的发展脉络、比较不同实验方法的各自特点的基础上, 对一些具有代表性的关于脱氧核糖核酸分子结的研究工作进行了重点介绍, 探讨了脱氧核糖核酸分子结所具有的与常规小分子体系所不同的特殊电学性质, 同时对该领域的未来发展进行了展望.  相似文献   

6.
有机功能分子是新型纳光电器件研究热门材料之一, 多用金属-分子-金属结方法研究其荷电输运特性.本文从无损制备、微纳尺度及可寻址性等方面, 综述了金属-分子-金属结器件研究进展. 将制备方法归为软接触法、扫描探针显微镜法、对电极法、交叉线法、角沉积法和纳米孔法等六大类, 并分析了不同方法及实验参数对荷电输运特性的影响. 总的来说, 扫描探针法可用于分子电学特性的快速统计分析, 但可寻址性差; 纳米孔分子结具有良好的可寻址性, 可用于分子输运特性的变温研究, 但上电极沉积可导致分子层破坏或界面特性不确定; 角度沉积法和软接触法可有效减少电极热沉积对分子层的烧蚀, 但器件尺度较大; 对电极法可获得纳米级可寻址分子结, 若结合模板压印交叉纳米线法制备电极, 则在无损分子器件研究及其集成方面有很好的前景.  相似文献   

7.
《高分子学报》2021,52(6):602-616
分子尺度电子学是利用单个分子或分子单层组装体作为活性单元来实现电子学功能的一门前沿科学领域.基于自组装单分子膜(SAMs)的分子器件在分子电子学的实用化道路上具有很大的发展潜力与应用前景.目前,SAMs功能器件的研究仍处于起步阶段,其性能还有很大提升空间.本文首先评述了SAMs器件的构筑方法,针对直接蒸镀金属顶电极会对SAMs造成破坏的问题,介绍了3类软接触电极,包括液态金属、导电高分子和石墨烯顶电极;然后以固态光开关器件为例介绍了近年来功能器件上的一些新进展,分子优化设计对于提升器件响应活性具有重要意义;同时总结了共轭聚合物SAMs器件的制备方法和性能,通过合理的结构设计,共轭聚合物能进行电荷的长程输运,并有望提供比小分子更优异的光电功能;最后讨论和展望了未来的发展方向.  相似文献   

8.
结合近期研究工作, 简要介绍了在溶液环境下, 利用有机分子在金属表面构筑纳米结构, 利用光化学反应方法调控所得的纳米结构, 利用电化学扫描隧道显微镜对这些结构进行观察, 及利用毛细管隧道结方法测量纳米结构电学性质的相关结果. 并展望了表面纳米结构的构筑、控制和性质研究领域的发展趋势.  相似文献   

9.
自组装分子电子器件   总被引:3,自引:0,他引:3  
自组装技术是解决有机功能分子与电极连接问题最有希望的技术之一,近-来在构筑分子电子器件中得到了越来越多的应用,成为分子电子学发展的一个重要方向.本文介绍了自组装技术在制备分子器件中的应用.并讨论了自组装分子器件的前景和面临的一些问题.  相似文献   

10.
金属配合物分子纳米结构构筑与调控的STM研究进展   总被引:1,自引:1,他引:0  
金属配合物分子具有结构多样且可控以及功能丰富等特点,在催化、传感、分子识别、纳米器件等领域得到广泛应用, 对金属配合物分子的研究已是分子科学研究中的热点之一.同时, 利用配合物分子构筑表面分子纳米结构以及对配合物单分子性质的研究也日趋活跃. 近年来, 本研究组发展了配合物分子在固体表面的自组装技术, 并结合扫描隧道显微技术(STM)开展了一系列有关金属配合物分子表面纳米结构的研究工作, 在固体表面成功实现了对配体、配合物分子的高分辨STM成像、原位配合以及分子识别, 设计和构筑了多种功能配合物分子纳米结构,并系统研究了结构形成规律. 本文以本研究组近年来有关金属配合物分子组装的研究结果为主, 结合国内外相关研究小组的研究结果,综述有关金属配合物分子纳米结构的构筑与调控的STM研究进展, 介绍该类分子在固体表面的组装和分散规律, 为表面分子纳米结构的构筑和调控提供理论和实验基础.  相似文献   

11.
Single‐molecule junctions are of particular interest in molecular electronics. To realize molecular electronic devices, it is crucial that functional single‐molecule junctions are connected to each other by using joint units on the atomic scale. However, good joint units have not been reported because controlling the charge transport directions through the junctions is not trivial. Here, we report a joint unit that controls and changes the charge transport directions through the junctions, by using a ruthenium–tris‐bipyridine (RuBpy) complex. The RuBpy single‐molecule junction was fabricated with scanning tunnelling microscopy‐based break junction techniques. The RuBpy single‐molecule junction showed two distinct high and low conductance states. The two states were characterized by the conductance measurement, the correlation analysis, and the comparative experiment of bipyridine (Bpy), which is the ligand unit of RuBpy. We demonstrate that the Ru complex has multiple charge transport paths, where the charge is carried vertically and horizontally through the complex depending on the path.  相似文献   

12.
Ability to control charge transport at nanometer scale lies in the heart of design of fast reliable electronic devices. Molecular electronics thrive to use functional molecules for such transport. If the molecule contains redox center(s), a diode-like or transistor-like behavior can be easily explored by controlling not only the voltage difference between two metallic contacts of the molecular junction but also the potential of one of the contacting electrodes with respect to some reference. Thus, one needs to understand the relationship between electrochemical electron transfer and charge transport in metal–molecule–metal junctions. This review presents latest theoretical approaches toward understanding of such relationship and discusses pivotal experimental works to validate them. Tunneling and hopping pathways may operate in parallel (two-channel model), but experimental conditions dictate the channel preference.  相似文献   

13.
The charge transport through single-molecule electronic devices can be controlled mechanically by changing the molecular geometrical configuration in situ, but the tunable conductance range is typically less than two orders of magnitude. Herein, we proposed a new mechanical tuning strategy to control the charge transport through the single-molecule junctions via switching quantum interference patterns. By designing molecules with multiple anchoring groups, we switched the electron transport between the constructive quantum interference (CQI) pathway and the destructive quantum interference (DQI) pathway, and more than four orders of magnitude conductance variation can be achieved by shifting the electrodes in a range of about 0.6 nm, which is the highest conductance range ever achieved using mechanical tuning.  相似文献   

14.
Photoresponsive molecular systems are essential for molecular optoelectronic devices, but most molecular building blocks are non‐photoresponsive. Employed here is a photoinduced proton transfer (PIPT) strategy to control charge transport through single‐molecule azulene junctions with visible light under ambient conditions, which leads to a reversible and controllable photoresponsive molecular device based on non‐photoresponsive molecules and a photoacid. Also demonstrated is the application of PIPT in two single‐molecule AND gate and OR gate devices with electrical signal as outputs.  相似文献   

15.
This paper discusses the electronic properties of molecular devices made using covalently bonded molecular layers on carbon surfaces with evaporated silicon top contacts. The Cu "top contact" of previously reported carbon/molecule/Cu devices was replaced with e-beam deposited Si in order to avoid Cu oxidation or electromigration, and provide further insight into electron transport mechanisms. The fabrication and characterization of the devices is detailed, including a spectroscopic assessment of the molecular layer integrity after top contact deposition. The electronic, optical, and structural properties of the evaporated Si films are assessed in order to determine the optical gap, work function, and film structure, and show that the electron beam evaporated Si films are amorphous and have suitable conductivity for molecular junction fabrication. The electronic characteristics of Si top contact molecular junctions made using different molecular layer structures and thicknesses are used to evaluate electron transport in these devices. Finally, carbon/molecule/silicon devices are compared to analogous carbon/molecule/metal junctions and the possible factors that control the conductance of molecular devices with differing contact materials are discussed.  相似文献   

16.
We studied charge transport through core‐substituted naphthalenediimide (NDI) single‐molecule junctions using the electrochemical STM‐based break‐junction technique in combination with DFT calculations. Conductance switching among three well‐defined states was demonstrated by electrochemically controlling the redox state of the pendent diimide unit of the molecule in an ionic liquid. The electrical conductances of the dianion and neutral states differ by more than one order of magnitude. The potential‐dependence of the charge‐transport characteristics of the NDI molecules was confirmed by DFT calculations, which account for electrochemical double‐layer effects on the conductance of the NDI junctions. This study suggests that integration of a pendant redox unit with strong coupling to a molecular backbone enables the tuning of charge transport through single‐molecule devices by controlling their redox states.  相似文献   

17.
Understanding the effects of intermolecular interactions on the charge-transport properties of metal/molecule/metal junctions is an important step towards using individual molecules as building blocks for electronic devices. This work reports a systematic electron-transport investigation on a series of "core-shell"-structured oligo(phenylene ethynylene) (Gn-OPE) molecular wires. By using dendrimers of different generations as insulating "shells", the intermolecular π-π interactions between the OPE "cores" can be precisely controlled in single-component monolayers. Three techniques are used to evaluate the electron-transport properties of the Au/Gn-OPE/Au molecular junctions, including crossed-wire junction, scanning tunneling spectroscopy (STS), and scanning tunneling microscope (STM) break-junction techniques. The STM break-junction measurement reveals that the electron-transport pathways are strongly affected by the size of the side groups. When the side groups are small, electron transport could occur through three pathways, including through single-molecule junctions, double-molecule junctions, and molecular bridges between adjacent molecules formed by aromatic π-π coupling. The dendrimer shells effectively prohibit the π-π coupling effect, but at the same time, very large dendrimer side groups may hinder the formation of Au-S bonds. A first-generation dendrimer acts as an optimal shell that only allows electron transport through the single-molecule junction pathway, and forbids the other undesired pathways. It is demonstrated that the dendrimer-based core-shell strategy allows the single-molecule conductance to be probed in a homogenous monolayer without the influence of intermolecular π-π interactions.  相似文献   

18.
Electron–phonon interactions are extremely important for understanding charge transport, inelastic processes, heating, and heat dissipation in nanoscale molecular and atomic devices. In molecular electronics Inelastic Electron Tunneling Spectroscopy (IETS) has recently emerged as one of the premier methods for characterizing molecular-scale junctions and devices. This method provides a distinct chemical fingerprint for identifying molecules within a junction, and has allowed for clear demonstrations of single molecule devices, the effects of electric field on molecular orbitals, the importance of molecular configuration on conductance, as well as information about the charge transport mechanism. In this review we will discuss the use of Point Contact (PC) and IET spectroscopies on molecular and atomic systems, discuss the basic principles involved in inelastic transport for these spectroscopic methods to function, and focus on the experimental techniques involved and the important conclusions drawn from the experiments performed to date.  相似文献   

19.
Understanding electron transport through a single molecule bridging between metal electrodes is a central issue in the field of molecular electronics. This review covers the fabrication and electron‐transport properties of single π‐conjugated molecule junctions, which include benzene, fullerene, and π‐stacked molecules. The metal/molecule interface plays a decisive role in determining the stability and conductivity of single‐molecule junctions. The effect of the metal–molecule contact on the conductance of the single π‐conjugated molecule junction is reviewed. The characterization of the single benzene molecule junction is also discussed using inelastic electron tunneling spectroscopy and shot noise. Finally, electron transport through the π‐stacked system using π‐stacked aromatic molecules enclosed within self‐assembled coordination cages is reviewed. The electron transport in the π‐stacked systems is found to be efficient at the single‐molecule level, thus providing insight into the design of conductive materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号