首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A water-insoluble chelating material, p-dimethylaminobenzylidenerhodanine on silica gel (DMABR—SG) is described for preconcentration of trace amounts of silver(I), gold(III) and palladium(II) from water samples. Radioactive tracers (110mAg and 195Au) were used to study the behavior of silver and gold; palladium was monitored spectrophotometrically as its 1-(2-pyridylazo)naphthol complex in chloroform. In batch experiments, silver was quantitatively retained on the DMABR—SG at acidities ranging from 1.7 M to pH 5, and gold from 3 M to pH 5; equilibrium was achieved within 1 min for both elements. From sea water, silver ion was completely retained at pH 1.0–6.5 and gold ion at pH 1.0–3.5. In the case of palladium, shaking for about 20 min was required for quantitative retention at pH 1.0–5.0 for aqueous solution and at pH 1.0–7.0 for sea water. The chelating capacity of the DMABR—SG was 23 μmol Ag, 11 μmol Au and 11 μmol Pd per g. Quantitative recovery of silver and gold on DMABR—SG columns from sea water was achieved at higher flow rates (1–2 l h-1 and 2–3 l h-1, respectively) than with other chelating resins, e.g., Chelex 100, palladium required slower flow rate (150 ml h-1). Silver retained on the DMABR—SG column was completely eluted with 20 ml of 2.5% sodium thiosulfate solution but palladium remained on the column. Silver, gold and palladium were quantitatively eluted with 20 ml of 0.1% thiourea in 0.1 M hydrochloric acid.  相似文献   

2.
Americium(III) can be quantitatively extracted with 1 M diisoamylsulphoxide in Solvesso-100 from aqueous 0.02 M HNO3—2.5 Al(NO3)3 solutions and, after dilution of the extract with ethanol and nitric acid, determined in the organic phase with arsenazo-III. The apparent molar absorptivity is 1.58 × 105 l mol-1 cm-1 at 652 nm. The system obeys Beer's law within the range 0.1–1.6 μg Am ml-1; 0.11 μg Am ml-1 is determined with a reproducibility better than ±2%. Relatively large amounts of Ca(II), Cr(III), Fe (III), U(VI), Cl-, NO2-, NO3- and F- are tolerated. Interferences of Ce(IV), Pu(IV) and Th(IV) are eliminated by prior extraction with 2-thenoyltrifluoroacetone; only europium(III) interferes appreciably. Colour development is almost instantaneous and absorbances are virtually constant for 12 h.  相似文献   

3.
Small amounts of phosphate (0.08–1.16 μg ml-1) and larger amounts of silicate (12–60 μg ml-1) can be determined simultaneously by a kinetic method based on the difference in the rates of the heteropoly blue formation with molybdenum (V)—molybdenum (VI) mixtures in 0.28 M perchloric acid. The interference of large amounts of iron(III) on the determination of phosphate can be eliminated by masking with sodium hydrogen sulfite; this method is applicable to reagent-grade iron(III) chloride.  相似文献   

4.
Controlled anodic dissolution of copper in a separate generator cell yields well-defined concentrations of catalyst, depending on the voltage applied. This adjustable generation of copper catalyst makes it possible to determine iron over a wide range of concentration (10–1500 μg Fe3+ ml-1) via the iron(III)—thiosulphate reaction. By the copper(II)-catalyzed hydrogen peroxide—hydroquinone reaction, EDTA can be determined as an inhibitor (0.5–5 μg ml-1) and cadmium(II) as a reactivator (1–10 μg ml-1). As zinc(II) forms complexes with 2,2'-bipyridine, which activates copper in this reaction, it can be determined (5–50 μg Zn2+ ml-1) by measuring the decrease in activation. The electrogeneration of silver ion as a catalyst is also described. The sulphanilic acid—peroxodisulphate reaction is catalyzed by silver(I), which is again activated by 2,2'-bipyridine. Zinc(II) can be determined (0.29–2.9 mg Zn2+ ml-1) by the same principle as in the copper(II)-catalyzed reaction.  相似文献   

5.
A simple procedure is described for reducing the chemical interference of heavy metal ions with the hydride—atomic absorption spectroscopic method for the determination of selenium. This is achieved through the formation of stable chlorocomplexes of these ions in 7.5 M HCl. Up to 30 μg Cu(II) ml-1, 500 μg Ni(II) ml-1, and 500 μg Fe(III) ml-1 do not interfere. Recoveries of selenium from standard reference samples, fortified with known interfering concentrations of heavy metals, range between 92 and 101%. The reducing property of hydrochloric acid is used to differentiate between Se(IV) and Se(VI) species.  相似文献   

6.
A method is described for the determination of particulate chromium and dissolved chromium(III) and (VI) in water at μg l-1 levels. Particulate material is collected by filtration of the water sample through a membrane filter (0.4-μm pore-size). Chromium(III) and chromium(VI) are then coprecipitated, separately and in that order, with iron(III) hydroxide (at pH 8.5) and a cobalt—pyrrolidinedithiocarbamate carrier complex (at pH 4.0). Both precipitates are collected as thin films on membrane filters and, with the particulate material, analysed directly for chromium by x-ray fluorescence spectrometry. Detection limits, for a 100-ml water sample and counting times of 100 s, are 0.1 μg Cr l-1. The method is unaffected by sea salt and is applicable, without modifications, to river and estuarine waters.  相似文献   

7.
A flow-injection analysis system incorporating a glassy carbon voltammetric detector cell is described. Meptazinol (0.01–10 μg ml-1) can be determined by electro-chemical oxidation in a carrier stream of 0.05 M sodium acetate—0.1 M acetic acid in 98% ethanol at sampling rates up to 80 samples per hour.  相似文献   

8.
The most convenient spectral regions for dye laser excitation are presented for seven lanthanide ions. Fluorescence lifetimes are given for 0.5 M sulphuric acid and 3 M potassium carbonate media. With the excimer-pumped dye laser, the detection limits are in the range 0.1 μg 1?1 (Eu) to 50 μg 1?1 (Gd). Examples of the resolution of mixtures are given.  相似文献   

9.
The pH-stat method, which is well known in organic chemistry and biochemistry, is used for the kinetic determination of metal ion catalysts. Indicator reactions that involve protons can be followed by controlled addition of standard base or acid. This is illustrated by the following examples: determination of copper(II) (0.03–0.3 μg ml-1) with the indicator reaction ascorbic acid—peroxydisulphate; determination of molybdenum(VI) (0.2–2.5 μg ml-1) with the indicator reaction thiosulphate—hydrogen peroxide; determination of zirconium(IV) (0.2–2 μg ml-1) with the indicator reaction iodide—hydrogen peroxide; and determination of vanadium(V) (0.2–2 μg ml-1) with the indicator reaction iodide—bromate. For one example, the copper—ascorbic acid—peroxydisulphate reaction, it is shown that the pH-stat method has distinct advantages over closed systems, giving considerably better sensitivity for the determination of copper (0.5–5 ng ml-1 ).  相似文献   

10.
A novel tetrachlorothallate (III) (TCT)-selective membrane sensor consisting of tetrachlorothallate (III)-2,3,5-triphenyl-2-H-tetrazolium ion pair dispersed in a PVC matrix plasticized with dioctylphthalate is described. The electrode shows a stable, near-Nernstian response for 1×10−3-4×10−6 M thallium (III) at 25 °C with an anionic slope of 56.5±0.5 over the pH range 3-6. The lower detection limit and the response time are 2×10−6 M and 30-60 s, respectively. Selectivity coefficients for Tl(III) relative to a number of interfering substances were investigated. There is negligible interference from many cations and anions; however, iodide and bromide are significantly interfere. The determination of 0.5-200 μg ml−1 of Tl(III) in aqueous solutions shows an average recovery of 99.0% and a mean relative standard deviation of 1.4% at 50.0 μg ml−1. The direct determination of Tl(III) in spiked wastewater gave results that compare favorably with those obtained by the atomic absorption spectrometric method. The electrode was successfully applied for the determination of thallium in zinc concentrate. Also the tetrachlorothallate electrode has been utilized as an end point indicator electrode for the determination of thallium using potentiometric titration.  相似文献   

11.
Antipyrylazo III or diantipyrylazo (3,6-bis(4-antipyrylazo)-4,5-dihydroxy-2, 7-napthalenedisulfonic acid) forms at PH 12.7 a complex Ca2HL with calcium. The logarithmic overall stability constant, 10g β211, is 23.99 ±0.03 (0.1 MNaClO4,25°C).The effective molar absorptivity is 21,500 ±100 l mole-1 cm-1 at 605 nm. The complex can be used for a selective photometric determination of calcium(0.25–3.50μmole) if tri-and tetravalent ions are removed by extraction with cupferron (into chloroform) and transition divalent ions are masked with sodium cyanide. Only strontium (0.5 μmole) and EDTA (0.1 μmole) interfere seriously.  相似文献   

12.
Procedures are described for the determination of arsenic in sea water, potable waters and effluents. The sample is treated with sodium borohydride added at a controlled rate. The arsine evolved is absorbed in a solution of iodine and the resultant arsenate ion is determined photometrically by a molybdenum blue method. The time required for a complete analysis is about 90 min, but of this only 15 min is operator time. For sea water the range, standard deviation, and detection limit are 1–4 μgl-1, 1.4 % and O.14 μg l-1, respectively; for potable waters they are 0–800 μg l-1, about 1 % (at 20μg l-1 level) and 0.5μg l-1, respectively. Silver and copper cause serious interference at levels of 0.5 mgl-1, and nickel, cadmium and bismuth interfere at concentrations of a few tens of mg l-1; however, these elements can be removed either by preliminary extraction with a solution of dithizone in chloroform or by ion exchange. Arsenic present in organo-arsenic compounds is not directly determinable, but can be rendered reactive either by photolysis with ultraviolet radiation or by oxidation with permanganate or nitric—sulphuric acid mixture. Arsenic(V) can be determined separately from total inorganic arsenic after extracting arsenic(III) as its pyrrolidine dithiocarbamate into chloroform.  相似文献   

13.
A method utilizing differential pulse polarography for the determination of chromium(VI) in natural water is described. Additions of 0.62 μg Cu(II) ml-1 and 0.55 μg Fe(III) ml-1 did not interfere with the determination of 0.050 μg Cr(VI) ml-1. The natural water samples containing chromium(VI) were buffered to approximately pH 7 with 0.1 M ammonium acetate and 0.005 M ethylene diamine and analyzed. Natural water samples of chromium content from 0.035 μg ml-1 to 2.0 μg ml-1 may be analyzed directly without further preparation. The detection limit is 0.010 μg ml-1.  相似文献   

14.
Antimony(III) is determined by means of electrolysis at ?0.40 V vs. Ag/AgCl on a gold-coated gold fibre electrode for 0.5–10 min in a redox buffer containing 0.01 M iron(II) in 0.10 M hydrochloric acid, and subsequent stripping with a constant current of 0.50μA either in 2 M hydrochloric acid or in 4 M hydrochloric acid/4 M calcium chloride. Antimony(V) is determined by the same procedure in 4 M hydrochloric acid medium. Bismuth(III) is masked by the addition of iodide to the sample prior to electrolysis. Antimony(III) and antimony(V) are determined by standard addition methods; the whole procedure including digital and graphical evaluation of the results is fully automated. The antimony(V) concentrations in the river water reference sample SLRS-1 and the seawater reference sample NASS-1 were found to be 0.63 and 0.31 μg l?1 with standard deviations of 0.046 and 0.051 μg l?1, respectively (n=15). The certified value for SLRS- 1 is 0.63±0.05 μg l?1; no certified value is available for NASS-1.  相似文献   

15.
A method has been developed for the separation of Fe(II)-1,10-phenanthroline and Fe(III)-5-sulphosalicylate complexes on a reversed-phase C18 column in the presence of an ion-pairing reagent. Samples were injected on the column in the pre-complexed form and separated using a mobile phase consisting of acetonitrile [0.1% (w/v) in 5-sulphosalicylic acid] ?0.02 M sodium acetate buffer (pH 6.9) [0.1% (w/v) in tetramethylammonium chloride] (1 + 1). Spectrophotometric detection of the complexes was carried out at 515 nm. Linear calibration graphs were obtained for 1–12 μg mol?1 Fe(II) and Fe(III).  相似文献   

16.
Thallium is determined in geological reference materials by acid digestion, extraction of thallium(III) from 0.5 M HBr solution into methyl isobutyl ketone and direct electrothermal atomic absorption spectrometry. The method yields results that agree with published values, has a detection limit of 0.04 μg Tl g-1, and is relatively free of interferences.  相似文献   

17.
A simple method for the elements preconcentration on thin-layer paraffin-treated cellulose filters was proposed. It was found that pyrrolydinedithiocarbamates of As(III), Bi, Cd, Co, Cu, Fe(III), Ni, Pb, Se(IV), V(V) and Zn obtained after mixing of sample (3-5 ml min−1) and reagent (0.7-1.0 ml min−1) streams were quantitatively recovered from 100 ml sample. The sample acidity was adjusted to pH 4.8-5.2 for preconcentration of Cd, Co, Cu, Fe(III), Ni, Pb, V(V) and Zn, and to 2 M HCl for preconcentration of As, Bi and Se. The optimum reagent concentration was found to be 0.1%. The elements were determined on the filters by X-ray fluorescence spectrometry. The detection limits achieved were 0.1-4.0 μg of element on the filter. Relative standard deviation (R.S.D.) was not higher than 0.08 while determining 5-50 μg of elements on filter. Accuracy and precision of the technique proposed were evaluated by the analysis of spiked natural samples.  相似文献   

18.
Atomic absorption spectrometry with an induction furnace is used for the determination of cadmium (0.002–2 μg g-1), indium (0.6–350 μg g-1) and zinc (0.05–26 μg g-1) in 0.8–35 mg samples of nickel—base alloys dropped into the furnace. A resistively-heated furnace is employed for the determination of lower concentrations of indium (<0.6 μg g-1). Standardised alloys were used for calibration. Accuracy, precision and detection limits are described for numerous nickel—base alloys. With alloys containing zinc, > 0.1 μg Cd g-1 and >0.6 &,mu;g In g-1, the relative standard deviations are 12%, 8% and 7%, respectively. Calculated detection limits for cadmium, indium and zinc are 2 ng g-1, 10 ng g-1 and 10 ng g-1, respectively.  相似文献   

19.
Doğutan M  Filik H  Tor I 《Talanta》2003,59(5):1053-1060
A new melamine based polymeric sequestering resin was prepared for preconcentration and separation of hexavalent chromium from water, and its sequestering action was investigated. The water-insoluble, cross-linked sequestering resin was formed by reaction with bromosuccinic acid and cross-linking of melamine. The active sequestering group on the resin is NH-(Succinic acid) or salt thereof. The resulting chelating resin was characterized by infrared spectra. The newly prepared resin quantitatively retained Cr(VI) at pH 2.0-4.0 when the flow rate was maintained between 1 and 5 ml min−1. The retained Cr(VI) was instantaneously eluted with 25 ml of 0.1 M NaOH. The chromium species were determined by a flame atomic absorption spectrometer. The limits of detection for Cr(VI) and Cr(III) were found to be 5.3 and 4.2 μg l−1, respectively. The precision and accuracy of the proposed procedure was checked by the use synthetic and reference steel samples. The established preconcentration method was successfully applied to the determination and selective separation of Cr(VI) in electroplating industry wastewater. Total concentrations determined by the spectrophotometric method (110.3±0.6 g l−1 Cr(VI) and 1.2±0.3 g l−1 Cr(III)) are compared with those found by FAAS and the obtained results (110.4±1.8 g l−1 Cr(VI) and 1.4±0.5 g l−1 Cr(III)) show good agreement.  相似文献   

20.
2-Mercapto-N-2-naphtylacetamide (thionalide) on silica gel is used for differential preconcentration of μg l?1 levels of arsenic(III) and arsenic(V) from aqueous solution. In batch experiments, arsenic(III) was quantitatively retained on the gel from solutions of pH 6.5–8.5, but arsenic(V) and organic arsenic compounds were not retained. The chelating capacity of the gel was 5.6 μmol g?1 As(III) at pH 7.0. Arsenic retained on teh column was completely eluted with 25 ml of 0.01 M sodium borate in 0.01 M sodium hydroxide containing 10 mg l?1 iodine (pH 10). The arsenic was determined by silver diethyldithiocarbamate spectrophotometry. Arsenic(V) was subsequently determined after reduction to arsenic(III) with sulphite and iodide. Arsenic(III) and arsenic(V) in sea water are shown to be < 0.12 and 1.6 μg l?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号