首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the iron oxide/silver (FexOy/Ag) nanocomposite has been successfully prepared by a facile one-step method using goethite (α-FeOOH) rods as support. The diameter of the as-synthesized goethite rods was between 250 and 500 nm and the silver nanoparticles sizes were about 10–50 nm. By varying the concentrations, the FexOy/Ag nanocomposite with different Ag contents are successfully obtained. The FexOy/Ag nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and energy dispersive spectroscopy, respectively. Due to the unique nanostructure, these nanocomposites can catalyze degradation of both aromatic nitro compounds and organic dyes only within a few minutes, which show high catalytic performance.  相似文献   

2.
Microwave-induced combustion with glycine, CTAB-assisted hydrothermal process with NaOH and NH3, EDTA assisted-hydrothermal methods have been applied to prepare NiFe2O4 nanoparticles for the first time. Structural and magnetic properties of the products were investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmison electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and electron spin resonance spectrometry (EPR). TEM measurements showed that morphology of the product depends on the synthesis method employed. The average cystallite size of NiFe2O4 nanoparticles was in the range of 14–59 nm as measured by XRD. The uncoated sample (Method A) had an EPR linewidth of 1973 Oe, the coated samples reached lower values. The magnetic dipolar interactions existing among the Ni ferrite nanoparticles are reduced by the coatings, which could cause the decrease in the linewidth of the EPR signals. Additionally, the linewidth increases with an increase in the size and the size distribution of nanoparticles.  相似文献   

3.
Metallic nanoparticles embedded into the structure of metal oxides may play a role of catalytic substances. Such composites are mostly applied in oxidation reactions. The paper presents two one-step-methods for obtaining nanocomposites of gold embedded in the structure of iron oxide matrices (nanoAu/Fe2O3). Gold nanoparticles were formed in situ in the process of iron hydroxide dehydration. Thanks to the use of tannic acid it was possible to effectively reduce gold ions and stabilize the forming metal nanoparticles. The composites were prepared in the fields of microwave, ultraviolet radiation. The physicochemical properties of products were determined by scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray analysis and high-resolution transmission electron microscopy technique with EDS and elemental mapping mode. Also, the catalytic activity of the nanocomposites obtained was evaluated based on the process of methyl orange degradation. It was observed that products obtained according to the microwave radiation method are characterized by improved applying properties.  相似文献   

4.
TiO2 nanoparticles have been synthesized on the surface of exfoliated montmorillonite at a low temperature in benzyl alcohol medium. According to X-ray diffraction (XRD), N2 adsorption-desorption isotherm and transmisson electron microscopy (TEM), it was found that the intercalation of TiO2 nanoparticles destroyed the ordered structure of montmorillonite to some extent, and the crystallites of the nanocomposites are assembled to form a house-of-cards structure. The size of the nanoparticles in the interlamellar space is about 4 nm. The nanocomposites exhibited excellent photocatalytic activity in methylene blue degradation due to the synergetic effect of the adsorptive ability to organic compound of cetyl trimethylammonium bromide—montmorillonite and the catalytic ability of TiO2 nanoparticles in it.  相似文献   

5.
The study of superparamagnetic Fe3O4/Ag nanocomposites have received great research attention due to their wide range of potential applications in biomedicine. In this report, an easy microemulsion reaction was employed to synthesis Fe3O4/Ag nanocomposites with self-aggregated branch like nanostructures. The Fe3O4 nanoparticles were initially prepared and subsequently AgNO3 was reduced as Ag by chemical reduction method. The results showed that the average size of the Fe3O4/Ag nanocomposites were in the range of 10 ± 2 nm. These nanoparticles were self-aggregated as a branch like nanostructure. The optical properties of Fe3O4 nanoparticles were modified with surface plasmon resonance of Ag nanoparticles. The observed saturation magnetization of superparamagnetic Fe3O4/Ag nanocomposites were 40 emu/g.  相似文献   

6.
In the problem of the production silver nanoparticles, mass spectrometry allows one to identify nanoclusters as nuclei or intermediates in the synthesis of nanoparticles and to understand the mechanisms of their formation. Using low-temperature secondary emission mass spectrometry, we determined the cluster composition of a system formed in the microwave treatment of a solution of AgNO3 in ethylene glycol (M). Along with silver ion–ethylene glycol associates М m ? Ag+ (m = 1–5) and small silver clusters AgM n + (n = 1–9), unusual silver clusters with one hydrogen atom [Ag n H]+ (n = 2, 4) were observed. Possible pathways for the formation of silver nanoparticles taking into account hydrogen-containing cluster intermediates are discussed.  相似文献   

7.
It is shown that the saturation of an aqueous solution containing silver ions with hydrogen in the presence of 9.5-nm platinum nanoparticles leads to the reduction of silver and the formation of PtcoreAgshell bimetal nanoparticles. An increase in the concentration of silver ions gives rise to a number of elementary silver layers that cover the platinum core. It is established that the concentration of silver ions does not substantially affect the rate of the formation of a silver shell on the surface of platinum nanoparticles.  相似文献   

8.
Quantum-chemical study of the adsorption of two-, four- and eight-atomic silver clusters on stoichiometric and partially reduced rutile (110) surface, and of silver tetramer on the surface of anatase (101) was carried out in the framework of periodic DFT model. The most energetically favorable positions of clusters on the surface of TiO2 and the mechanism of binding the clusters with the substrate were revealed. According to the calculations, the adsorption of silver clusters on the surface of stoichiometric rutile (110) is more preferable than on the partially reduced one. The mechanism of binding the clusters with the surface of anatase and rutile is shown to be similar.  相似文献   

9.
New water-soluble selenium-containing nano-biocomposites have been synthesized by oxidation of sodium bis(2-phenylethyl)phosphinodiselenoate with hydrogen peroxide using humic substances to stabilize selenium nanoparticles. As shown by a set of physicochemical methods, the obtained hybrid nanocomposites are formed as spherical hexagonal selenium particles with a size of 13–30 nm, dispersed in a humic matrix.  相似文献   

10.
Transparent poly(methyl methacrylate) (PMMA)/TiO2 nanocomposites have been prepared by solution mixing PMMA with organically soluble titania xerogel. The organically soluble titania xerogel in the form of amorphous phase has been synthesized via a simple sol-gel method, involving hydrolysis of tetrabutyl titanate (TBT) in trifluoroacetic acid (TFA) and gelation. The obtained PMMA/TiO2 nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), thermogravimetry (TG) and ultraviolet-visible (UV-vis) absorption spectroscopy. The results showed that the interaction between titania nanoparticles and PMMA macromolecular chains led to a homogeneous dispersion of TiO2 in PMMA matrix. The resulting PMMA/TiO2 nanocomposites showed improved thermal stability, high transparency and high UV-shielding efficiency with a small amount of titania xerogel (≤3.0 wt %). The present work is of interest for developing a series of transparent UV-shielding nanocomposites.  相似文献   

11.
Bimetallic PtcoreAgshell nanoparticles demonstrate the ability to catalyze methylviologene reduction with hydrogen in water-alkali solutions, which is inherent in platinum nanoparticles. The onset of the reaction is preceded by an induction period whose duration increases with the thickness of a silver layer covering a platinum core. The reaction slows down with a rise in the thickness of the silver layer. The mechanism of catalysis is discussed.  相似文献   

12.
New water-soluble functional polymer nanocomposites with nanoparticles of metallic silver in a matrix of 1-vinyl-1,2,4-triazole copolymers with crotonic acid have been synthesized. The resulting nanocomposites contain isolated silver nanoparticles 2–12 nm in diameter, preferably spherical in shape, and uniformly distributed in the polymer matrix. ATR IR spectroscopy has revealed that the nanoparticles affect the state of the carboxyl groups in the polymer matrix. It has been found that the size of zero-valent silver nanoparticles depends on the ratio of monomer units in the polymer matrix. The thermo-oxidative stabilities of the synthesized copolymers and polymer nanocomposites produced on their basis have been examined.  相似文献   

13.
The interaction of NO with the surface of model Ag/Al2O3/FeCrAl catalysts containing Ag nanoparticles of different size (1 and 3 nm) was studied. The use of the Auger parameter αAg (E b(Ag3d5/2) + E kin(Ag MVV)) made it possible to reliably identify the change in the chemical state of silver cluster upon their interaction with О2 and NO. The oxygen treatment leads to the oxidation of small Ag nanoparticles (1 nm) and formation of AgO x clusters resulted in the intensive formation of nitrite—nitrate structures on the step of the interaction with NO. These structures are localized on both the silver clusters and Al2O3 surface. An increase in the size of Ag0 nanoparticles to 3 nm results in an increase in the stability of these structures and impedes the Ag0 → AgO x transition, due to which the formation of surface groups NO2 /NO3 is suppressed. The data obtained make it possible to explain the dependence of the activity of the Ag/Al2O3 catalysts in the selective reduction of NO on the Ag nanoparticle size.  相似文献   

14.
The objective of this work is the synthesis and characterization of an appropriate hydrophobic nanoparticle as a collector for flotation of hematit in Gol-E-Gohar Iron Mine Iran. In this investigation, SiO2–TiO2 nanocomposites have been successfully synthesized by hydrothermal process. The morphology, structure, and composition of the as-synthesized nanostructures have been investigated by scanning electron microscopy and transmission electron microscopy. The ability of SiO2–TiO2 nanocomposite to facilitate the froth flotation of pyrite was correlated to the hydrophobicity of the nanoparticles. Furthermore, the efficiency of the mineral flotation process was evaluated in terms of final recovery and grade of S in Gol-e Gohar Iron Ore Complex, Sirjan, Iran.  相似文献   

15.
New double mercury silver phosphide iodide Hg12Ag41P88I41 (1) was synthesized and its crystal structure was established. Compound 1 crystallizes in the cubic system. The characteristic feature of the crystal structure 1 is the presence of the anionic cage clusters P11 3−, which have been previously found in alkali metal compounds only. The well-ordered P11 3− clusters form a system of polyhedra, which encapsulate various disordered α-AgI-type fragments. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1882–1886, October, 2007.  相似文献   

16.
In this research work, crystalline structure, phase transformation, morphology and mean size of titanium dioxide (TiO2) electrospun nanofibers have been tailored by loading with 2.5, 5.0 and 7.5 wt.% of silver (Ag) which was followed by calcination. The as prepared non woven mats of nanofibers were calcinated at 500 °C to allow the reaction moieties to leave the TiO2 matrix and subsequently formation of Ag clusters. The effect of Ag loading and calcination on the transformation of microstructure of these electrospun nanofibers have been characterized by XRD, FESEM, FT-IR and Raman spectroscopy (RS). The mean diameter of Ag loaded nanofibers has been found to decrease upon calcination which was estimated to 70 nm whereas length was in the order of mm range. XRD and RS results have strongly supported the transformation of crystalline phase from rutile (A) to anatase (R) above 2.5 wt.% of Ag loading in TiO2 after calcination. The roughness on the outer surfaces of these nanofibers has been observed to increase with the Ag loading consequent to calcination, which has been attributed to the formation Ag nanoparticles that were found adsorbed at the surfaces. An interesting finding of this study is the existence of 1D nanofibers’ structure even at higher (7.5 wt.%) Ag loading, as observed by the SEM micrographs.  相似文献   

17.
A new type of ion-exchange nanocomposite membranes was prepared by addition of barium ferrite nanoparticles to a blend containing sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) and sulfonated polyvinylchloride via a simple casting method. Hard magnetic BaFe12O19 nanoparticles were synthesized via a facile sonochemical-assisted reaction. Nanoparticles and nanocomposites were then characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and alternating gradient force magnetometer. Various characterizations revealed that the addition of different amounts of inorganic fillers could affect the membrane performance. The inorganic nanoparticles not only created extra pores and water channels that led to improve ion conductivity, but also provided higher permselectivity and transport number of counter-ions.  相似文献   

18.
Phase change nanocomposites were prepared by dispersing γ-Al2O3 nanoparticles into melting paraffin wax (PW). Intensive sonication was used to make well dispersed and homogeneous composites. Differential scanning calorimetric (DSC) and transient short-hot-wire (SHW) method were employed to measure the thermal properties of the composites. The composites decreased the latent heat thermal energy storage capacity, L s, and melting point, T m, compared with those of the PW. Interestingly, the composites with low mass fraction of the nanoparticles, have higher latent heat capacity than the calculated latent heat capacity value. The thermal conductivity of the nanocomposites was enhanced and increased with the mass fraction of Al2O3 in both liquid state and solid state.  相似文献   

19.
Core–shell Ag@Pt nanoparticles have been synthesised by the means of seed-growth reaction including reduction of PtCl42− with silver and replacing Ag atoms with Pt. Surface-enhanced Raman scattering (SERS) spectra of pyridine (which gives slightly different spectra when interacting with various metals) adsorbed on synthesised Ag@Pt clusters were measured. SERS measurements have revealed that deposition of the platinum layer causes near elimination of the spectral interferences from pyridine directly interacting with the silver core. The average SERS enhancement factor for pyridine adsorbed on the Ag@Pt clusters was estimated as equal to about 103–104, significantly higher than the SERS enhancement factor achievable on the pure platinum nanostructures. Using the silver core (instead of the previously used gold cores) allows for measurement of strong SERS spectra on the Pt covered nanostructures for the wider range of the excitation radiation. This procedure of platinum deposition was tested with various silver nanoparticles – produced with borohydride, citrate and citrate/borohydride methods – which substantially differ in size distribution. The application of formed Ag@Pt structures for obtaining intense Raman spectra for molecules adsorbed on only slightly modified platinum surfaces is discussed.  相似文献   

20.
Silver nanoparticles well dispersed in a spherical Poly(vinylpyrollidone)(PVP) matrix were simply prepared by spray pyrolysis of aqueous solutions of AgNO3 and PVP without any reducing agent. Highly monodisperse silver particles were obtained above the initial mass ratio of PVP/AgNO3 ∼ 1 and in a certain narrow temperature range. Below the critical mass ratio the silver particles grew to larger ones polydispersely. As the ratio increased above it, they became smaller maintaining their monodispersity. The use of PVP considerably decreased the reduction temperature of the silver nitrate from 450 °C to 250 °C under the same pyrolysis conditions, due to its reducing nature. As the pyrolysis temperature increased above the decomposition temperature of PVP, the silver particles in the matrix grew to merge to a single particle while their crystallite size did not increase as much. The spherical assemblies of the silver nanoparticles were hardly disengaged even after severe washing off the matrix materials. The mechanism of the nanoparticle growth was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号