首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The intercalation of cations into layered-structure electrode materials has long been studied in depth for energy storage applications. In particular, Li+-, Na+-, and K+-based cation transport in energy storage devices such as batteries and electrochemical capacitors is closely related to the capacitance behavior. We have exploited different sizes of cations from aqueous salt electrolytes intercalating into a layered Nb2CTx electrode in a supercapacitor for the first time. As a result, we have demonstrated that capacitive performance was dependent on cation intercalation behavior. The interlayer spacing expansion of the electrode material can be observed in Li2SO4, Na2SO4, and K2SO4 electrolytes with d-spacing. Additionally, our results showed that the Nb2CTx electrode exhibited higher electrochemical performance in the presence of Li2SO4 than in that of Na2SO4 and K2SO4. This is partly because the smaller-sized Li+ transports quickly and intercalates between the layers of Nb2CTx easily. Poor ion transport in the Na2SO4 electrolyte limited the electrode capacitance and presented the lowest electrochemical performance, although the cation radius follows Li+>Na+>K+. Our experimental studies provide direct evidence for the intercalation mechanism of Li+, Na+, and K+ on the 2D layered Nb2CTx electrode, which provides a new path for exploring the relationship between intercalated cations and other MXene electrodes.  相似文献   

2.
Selectivity of Crystalline CeIV Phosphate Sulphate Hydrates for Li+, Na+, K+, Rb+, Cs+, and NH in Absolute Methanol and Absolute Dimethylsulphoxide The sequence of exchange capacities of Cerium(IV) phosphate sulphate hydrate (CePO4)2(HPO4)0.74(SO4)0.26 · 4,74 H2O for alkalimetal ions and ammoniumions in absolute methanol at 25°C for the case of a small excess of the exchanger (in relation to the equivalent amount) is given by K+ > Rb+ ≥ NH4+ > Cs+ > Na+ > Li+. Between the exchange capacity A of these cations and their ionic radii r (given by Ladd) exists the simple relation A = const./r. For Na+ the radius of the inner hydration shell must be considered. In absolute dimethyl-sulphoxide under the same conditions the sequence is K+ ≥ NH4 > Rb+ > Na+ > Cs+ > Li+. For K+, NH4, Rb+ and Cs+ the exchange capacity is given by A = const./r + const. · r4. The sequences of the alkali ions in both solvents are among the group of 13 sequences which are physicaly significant according to EISENMANNS 's theory. The results are compared with the observations made with water as solvent.  相似文献   

3.
The interaction of 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane (Kryptofix5) with alkali-metal cations (Li+, Na+, K+) in aprotic medium (acetonitrile) has been investigated. Conductance measurements demonstrated that 1:1 metal cation:ligand stoichiometries are found with these cations in this solvent. 7Li and 23Na NMR experiments were carried out by titration of the metal cation solutions with Kryptofix5 solution in CD3CN + CH3CN at 298 K. Thermodynamic parameters of complexation for this ligand and alkali-metal cations in acetonitrile at 278–308 K were derived from titration conductometry. The highest stability is found for sodium complex. The complexation sequence, based on the value of log K at 278–308 K was found to be Na+ > K+ > Li+.  相似文献   

4.
Owing to the high lability of cations in the three-dimensional framework of K1+x Mo12S14 (0 ≤ x ≤ 1.6), first-principles calculations and electrochemical methods have been carried out to study the insertion of cations in the empty channels of this compound. The cavity microelectrode that is a suitable electrode for powder material analysis has been used in voltammetric experiments. Results obtained for Li+, Na+, Rb+, K+, Cs+ and NH4 + cations are presented and discussed.  相似文献   

5.
Affinity capillary electrophoresis (ACE) and pressure‐assisted ACE were employed to study the noncovalent molecular interactions of antamanide (AA), cyclic decapeptide from the deadly poisonous fungus Amanita phalloides, with univalent (Li+, Na+, K+, and NH4+) and divalent (Mg2+ and Ca2+) cations in methanol. The strength of these interactions was quantified by the apparent stability constants of the appropriate AA‐cation complexes. The stability constants were calculated using the nonlinear regression analysis of the dependence of the effective electrophoretic mobility of AA on the concentration of the above ions in the BGE (methanolic solution of 20 mM chloroacetic acid, 10 mM Tris, pHMeOH 7.8, containing 0–50 mM concentrations of the above ions added in the form of chlorides). Prior to stability constant calculation, the AA effective mobilities measured at actual temperature inside the capillary and at variable ionic strength of the BGEs were corrected to the values corresponding to the reference temperature of 25°C and to the constant ionic strength of 10 mM. From the above ions, sodium cation interacted with AA moderately strong with the stability constant 362 ± 16 L/mol. K+, Mg2+, and Ca2+ cations formed with AA weak complexes with stability constants in the range 37–31 L/mol decreasing in the order K+ > Ca2+ > Mg2+. No interactions were observed between AA and small Li+ and large NH4+ cations.  相似文献   

6.
The kinetics of the redox reaction between mandelic acid (MA) and ceric sulfate have been studied in aqueous sulfuric acid solutions and in H2SO4? MClO4 (M+ = H+, Li+, Na+) and H2SO4? MHSO4 (M+ = Li+, Na+, K+) mixtures under various experimental conditions of total electrolyte concentration (that is, ionic strength) and temperature. The oxidation reaction has been found to occur via two paths according to the following rate law: rate = k[MA] [Ce(IV)], where k = k1 + k2/(1 + a)2[HSO4?]2 = k1 + k2/(1 + 1/a)2[SO42?]2, a being a constant. The cations considered exhibit negative specific effects upon the overall oxidation rate following the order H+ ? Li+ < Na+ < K+. The observed negative cation effects on the rate constant k1 are in the order Na+ < Li+ < H+, whereas the order is in reverse for k2, namely, H+ ? Li+ < Na+. Lithium and hydrogen ions exhibit similar medium effects only when relatively small amounts of electrolytes are replaced. The type of the cation used does not affect significantly the activation parameters.  相似文献   

7.
The complexation reactions between K+, Ag+, NH4+, and Hg2+ cations and the macrocyclic ligand, dibenzo-18-crown-6 (DB18C6), were studied in ethylacetate (EtOAc)-dimethylformamide (DMF) binary mixtures at different temperatures using the conductometric method. The conductance data show that the stochiometry of all the complexes is 1:1. A non-linear behavior was observed for the variation of log K f of the complexes versus the composition of binary mixed solvents, which was discussed in terms of heteroselective solvation and solvent-solvent interactions in binary solutions. It was found that the stability order of the complexes changes with changing the composition of the mixed solvents. The sequence of stabilities for the K+, Ag+, NH4+, and Hg2+ complexes with DB18C6 in EtOAc-DMF binary solutions (mol. % DMF 25.0) and (mol. % DMF 50.0) at 25°C is (DB18C6-Ag)+ > (DB18C6-K)+ > (DB18C6-Hg)2+ > (DB18C6-NH4)+, but in the cases of pure DMF and a binary solution of EtOAc-DMF (mol. % DMF 75.0) is (DB18C6-K)+ > (DB18C6-Hg)2+ > (DB18C6-Ag)+ ≈ (DB18C6-NH4)+. The values of thermodynamic quantities (ΔH c o, ΔS c o) for these complexation reactions have been determined from the temperature dependence of the stability constants, and the results show that the thermodynamics of the complexation reactions is affected by the nature and composition of the mixed solvents and, in all cases, positive values of ΔS c o characterize the formation of these complexes. In addition, the experimental results show that the values of entropies for the complexation reactions between K+, Ag+, NH4+, and Hg2+ cations and DB18C6 in EtOAc-DMF binary solutions do not change monotonically with the solvent composition. The text was submitted by the authors in English.  相似文献   

8.

Abstract  

From extraction experiments in the two-phase water–nitrobenzene system and γ-activity measurements, the stability constants of the tetraethyl p-tert-butyltetrathiacalix[4]arene tetraacetate (cone)·M+ complexes (M+ = Li+, H3O+, NH4 +, Ag+, or K+) were determined in water-saturated nitrobenzene. It was found that these constants increase in the cation order NH4 + < K+ < H3O+ < Ag+ < Li+ < Na+.  相似文献   

9.
The equilibrium in the system water—electrolyte—cross-linked polymer containing immobilized 2,8,14,20-tetramethyl-4,6,10,12,16,18,22,24-octahydroxycalix[4]arene was studied. Immobilized calixarene 1 was shown to form 1∶1, 1∶2, 1∶3, and 1∶4 compounds with inorganic cations (Na+, Cs+, and NH4 +), and with organic cations (hexamethylen-tetramine and β-diethylaminoethylp-aminobenzoate) 1∶1 compounds are formed. The affinity of immobilized calixarene1 increases in the series of cations: hexamethylenetetramine <Na+, Cs+, NH4 +<β-diethylaminoethylp-aminobenzoate. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2214–2216, November, 1998.  相似文献   

10.
Four imidazolyl acetamido p-tert-butylcalix[4]arenes 5–8 have been prepared by reacting the corresponding methyl esters derivatives 1–4 with histamine in 1:1 mixture of methanol:toluene. The yields ranged from 56 to 68%. 5–8 have been shown to be in cone conformation. The complexation behaviour of 5–8 towards monovalent metal picrates M+Pic with M+ = Li+, Na+, K+, Rb+ and Cs+ and divalent metal picrates M2+(Pic)2 with M2+ = Mg2+, Ca2+, Sr2+, Ba2+, Pb2+, Cd2+, Zn2+ and Co2+ are given. Tentative localisation of the metal cations in the receptors is given. The binding properties towards these cations have been determined along with stoichiometries of the complexes.  相似文献   

11.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq) + Cs+(org) ⟺ M+(org) + Cs+(aq) taking place in the two-phase water–phenyltrifluoromethyl sulfone (abbrev. FS 13) system (M+ = Li+, H3O+, Na+, NH4+ \hbox{NH}_{4}{}^{+} , Ag+, Tl+, K+, Rb+; aq = aqueous phase, org = FS 13 phase) were evaluated. Furthermore, the individual extraction constants of the M+ cations in the mentioned two-phase system were calculated; they were found to increase in the series of Li+ < H3O+ < Na+< NH4 + \hbox{NH}_{4}{}^{ + } < Ag+ < Tl+ < K+ < Rb+ < Cs+.  相似文献   

12.
The complexation reactions between Mg2+, Ca2+, Ag+ and Cd2+ metal cations with N-phenylaza-15-crown-5 (Ph-N15C5) were studied in acetonitrile (AN)–methanol (MeOH), methanol (MeOH)–water (H2O) and propanol (PrOH)–water (H2O) binary mixtures at different temperatures using the conductometric method. The conductance data show that the stochiometry of all of the complexes with Mg2+, Ca2+, Ag+ and Cd2+ cations is 1:1 (L:M). The stability of the complexes is sensitive to the solvent composition and a non-linear behaviour was observed for variation of log K f of the complexes versus the composition of the binary mixed solvents. The selectivity order of Ph-N15C5 for the metal cations in neat MeOH is Ag+>Cd2+>Ca2+>Mg2+, but in the case of neat AN is Ca2+>Cd2+>Mg2+>Ag+. The values of thermodynamic parameters (ΔH c o , ΔS c o ) for formation of Ph-N15C5–Mg2+, Ph-N15C5–Ca2+, Ph-N15C5–Ag+ and Ph-N15C5–Cd2+ complexes were obtained from temperature dependence of stability constants and the results show that the thermodynamics of complexation reactions is affected by the nature and composition of the mixed solvents.  相似文献   

13.
Pillared clays were characterised by thermal analysis and small-angle X-ray scattering. They were then examined for their ability to take up137Cs and90Sr/90Y isotopes as a function of concentration and competing cations (Na+, K+, NH4 +, Ca2+, Mg2+) in the concentration range 10−1 to 10−4 M. The radioisotope uptakes were quantified byK d (ml/g) measurements.  相似文献   

14.
A capillary electrophoretic (CE) method has been optimized for the separation of some common alkali and alkaline-earth metal cations in anti-asthmatic homeopathic liquid pharmaceutical preparations. Separation was carried out on a 74 cm (62.5 cm to the detector) × 75 μm ID fused silica capillary at a potential of 25 kV and 25 °C. Baseline separation of NH4 +, K+, Ca2+, Na+, Mg2+ and Li+ was achieved in less than 4.5 min. The proposed method was applied for the determination of the above-mentioned ions in homeopathic liquid formulations. Limits of quantitation (LOQ) observed were 1.5 ppm for NH4 +, Ca2+ and Mg2+ 0.8 ppm for Na+, 1.6 ppm for K+, and 0.4 ppm for Li+. During electrophoresis, the ingredients used in the preparation of homeopathic formulation did not interfere with the cations examined.  相似文献   

15.
DFT (B3LYP functional) and MP2 methods using 6-311+G(2d,2p) basis set have been employed to examine the effect of ring fusion to benzene on the cation--π interactions involving alkali metal ions (Li+, Na+, and K+) and alkaline earth metal ions (Be2+, Mg2+ and Ca2+). Our present study indicates that modification of benzene (π-electron source) by fusion of monocyclic or bicyclic (or mixture of these two kinds of rings) strengthens the binding affinity of both alkali and alkaline earth metal cations. The strength of interaction decreases in the following order: Be2+ > Mg2+ > Ca2+ > Li+ > Na+ > K+ for any considered aromatic ligand. The interaction energies for the complexes formed by divalent cations are 4–6 times larger than those for the complexes involving monovalent cations. The structural changes in the ring wherein metal ion binds are examined. The distance between ring centroid and the metal ion is calculated for all of the complexes. Strained bicyclo[2.1.1]hexene ring fusion has substantially larger effect on the strength of cation--π interactions than the monocyclic ring fusion for all of the cations due to the π-electron localization at the central benzene ring.  相似文献   

16.
The rate of the cerium (IV) oxidation of p-chloromandelic acid has been studied in perchlorate media at an ionic strength of 1.50 mol/dm3 by the stopped-flow technique and in H2SO4? MHSO4 (M+ = Li+, Na+, K+) and H2SO4? MClO4 (M+ = H+, Li+, Na+) mixtures at constant total electrolyte concentrations of 1.00 and 2.00 mol/dm3 using the conventional spectrophotometric method. In perchlorate media the kinetic data indicate the formation of two intermediate complexes between cerium (IV) and the organic substrate, but only one is significantly involved in the intramolecular electron-transfer process. The oxidation rate is markedly lower in sulfate media, where two reaction paths have been found to contribute to the overall redox reaction. The univalent cations examined exhibit negative specific effects upon the overall oxidation rate increasing in the order H+ < Li+ < Na+ < K+. Activation parameters have been also estimated.  相似文献   

17.
Adsorption isotherms of potential-determining H+ and OH ions and the pH dependences of the specific surface charge of detonation nanodiamond (DND) particles are obtained in a pH range of 3–10 by the acid-base titration of their hydrosols containing 0.001–1 M LiCl, NaCl, KCl, NaNO3, KNO3, and NaClO4 as background electrolytes. The data obtained attest to the chemical nonuniformity (heterogeneity) of a DND surface and different degrees of binding of background electrolyte cations and anions with ionized groups. It is revealed that the adsorption of OH-anions diminishes in the lyotropic series of cations Na+ > K+ > Li+ and increases with a decrease in the adsorbability of anions in the following series: NO3 ≊ ClO4 > Cl. The adsorption of potential-determining H+ and OH ions on a DND surface containing two types of functional groups, i.e., acidic carboxyl and amphoteric hydroxyl groups, is simulated by the Protofit software package. The optimal surface densities and ionization constants that correspond to minimal deviations of model adsorption isotherms from the experimental curves are found for these groups.  相似文献   

18.
The synthesis and complexive abilities of 5,11,17-tris(tert-butyl)-23 amino-25,26,27,28-tetra-propoxycalix[4]arene towards alkali cations Li+, Na+, K+, Rb+, Cs+ and alkali earth cations Mg2+, Ca2+, Sr2+ and Ba2+ in methanol-chloroform mixture have been evaluated at 25°C, using UV-Vis spectrophotometric techniques. The results showed that the ligand is capable to complex with all the cations by 1: 1 metal to ligand ratios. The selectivity presented considering the calculated formation constants are in the order Li+ > Na+ > K+ > Rb+ > Cs+ and Mg2+ > Ca2+ > Sr2+ > Ba2+ with the ligand.  相似文献   

19.
The complexation processes between Li+, Na+, K+ and NH 4 + cations with macrocyclic ligand, 4′-nitrobenzo-15C5, were studied in acetonitrile–methanol (AN–MeOH) binary mixtures at different temperatures using conductometric method. The conductance data show that the stoichiometry of the complexes formed between the ligand and Li+, Na+, K+ and NH 4 + cations is 1:1(M:L). Addition of 4′-nitrobenzo-15C5 to these cations solution, causes a continuous increase in the molar conductivities which indicates that the mobility of the complexed cations is more than the uncomplexed ones. The values of stability constants of the complexes were determined from conductometric data using GENPLOT computer program. The obtained results show that the selectivity order of the ligand for Li+, Na+, K+ and NH 4 + cations changes with the nature and composition of the binary mixed solvent. The values of thermodynamic parameters (ΔH°c, ΔS°c) for formation of the complexes were obtained from temperature dependence of the stability constants using the van’t Hoff plot. The results show that the complexes are both enthalpy and entropy stabilized. A non-linear behavior was observed between the stability constants (log K f ) of the complexes and the composition of the AN–MeOH binary solution.  相似文献   

20.
The resol polycondensation ofC-phenylcalix[4]resorcinarene with formaldehyde affords a corss-linked polymer possessing ion-exchange ability. The ion-exchange capacity of the polymer with respect to NH4 +, Me4N+, Et4N+, Bu4N+, and K+ cations was determined. The equilibrium in the systemsC-phenylcalix[4]resorcinarene-based polymer—binary or ternary aqueous solutions of electrolytes was studied by potentiometric titration and quantumchemical MNDO/PM3 calculation Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1475–1477, August, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号