首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transparent SnO2, nanocomposite ZrO2–SnO2 and ZrO2 thin films were prepared by sol–gel dip-coating technique. X-ray diffraction (XRD) spectra showed a mixture of three phases: tetragonal ZrO2 and SnO2 and orthorhombic ZrSnO4. X-ray photoelectron spectroscopy (XPS) gave Zr 3d, Sn 3d and O 1s spectra of the nanocomposite ZrO2–SnO2 thin film which revealed the presence of oxygen vacancies in the nanocomposite ZrO2–SnO2 thin film. Scanning electron microscopy (SEM) observations showed that microstructure of the nanocomposite ZrO2–SnO2 thin film consists of uniform dispersion of isolated SnO2 particles in ZrO2 matrix. The band gap for the ZrO2 was estimated to be 5.51 eV and that for the nanocomposite ZrO2–SnO2 film was 4.9 eV. These films demonstrated the tailoring of band gap values which can be directly employed in tuning the band gap by simply changing the relative concentration of zirconium and tin elements. Photoluminescence (PL) spectra revealed an intense emission peak at 424 nm in the nanocomposite ZrO2–SnO2 film which indicate the presence of oxygen vacancies in ZrSnO4.  相似文献   

2.
The voltammetry of nanoparticles and scanning electrochemical microscopy are applied to characterize praseodymium centers in tetragonal and monoclinic zirconias, doped with praseodymium ions (Pr x Zr1−x O2), prepared via sol–gel routes. Doped zirconia nanoparticles were synthesized by a sol–gel liquid-phase route and characterized by different techniques, including X-ray diffraction powder pattern, ultraviolet–visible diffuse reflectance spectroscopy, infrared spectroscopy, and transmission electron microscopy (TEM). Gels annealed at around 400 °C yielded tetragonal Pr x Zr1−x O2 phases. The monoclinic forms of Pr-doped ZrO2 were obtained by annealing at temperatures higher than 1,100 °C. TEM micrographs proved that the size of the nanoparticles produced was dependent on their crystalline form, around 15 and 60 nm for tetragonal and monoclinic, respectively. The electrochemical study confirmed that a relatively high content of praseodymium cation was in the chemical state (IV), i.e., as Pr4+, in both zirconia host lattices. The catalytic and photocatalytic effects of Pr4+ centers located in the monoclinic zirconia lattice on nitrite reduction and oxygen evolution reaction were studied.  相似文献   

3.
Ag doped ZrO2 thin films were deposited on quartz substrates by sol–gel dip coating technique. The effect of Ag doping on tetragonal to monoclinic phase transformation of ZrO2 at a lower temperature (500 °C) was investigated by X-ray diffraction. It is found that the Ag doping promotes the phase transformation. The phase transformation can be attributed to the increase in the tetragonal grain size and concentration of oxygen vacancies in the presence of the Ag dopant. Accumulation of the Ag atoms at the film surface and surface morphology changes in the films were observed by AFM as a function of varying Ag concentration. X-ray photoelectron spectroscopy gave Ag 3d and O 1s spectra on Ag doped thin film. The chemical states of Ag have been identified as the monovalent state of Ag+ ions in ZrO2. The Ag doped ZrO2 thin films demonstrated the tailoring of band gap values. It is also found that the intensity of room temperature photoluminescence spectra is suppressed with Ag doping.  相似文献   

4.
Zr–Al alloys containing up to 26 at.% aluminum, prepared by magnetron sputtering, have been anodized in 0.1 mol dm−3 ammonium pentaborate electrolyte, and the structure and dielectric properties of the resultant anodic oxide films have been examined by grazing incidence X-ray diffraction, transmission electron microscopy, Rutherford backscattering spectroscopy, and AC impedance spectroscopy. The anodic oxide film formed on zirconium consists of monoclinic and tetragonal ZrO2 with the former being a major phase. Two-layered anodic oxide films, comprising an outer thin amorphous layer and an inner main layer of crystalline tetragonal ZrO2 phase, are formed on the Zr–Al alloys containing 5 to 16 at.% aluminum. Further increase in the aluminum content to 26 at.% results in the formation of amorphous oxide layer throughout the thickness. The anodic oxide films become thin with increasing aluminum content, while the relative permittivity of anodic oxide shows a maximum at the aluminum content of 11 at.%. Due to major contribution of permittivity enhancement, the maximum capacitance of the anodic oxide films is obtained on the Zr–11 at.% Al alloy, being 1.7 times than on zirconium at the formation voltage of 100 V.  相似文献   

5.
CuAlO2 thin films were deposited on quartz substrates by sol–gel process using copper acetate monohydrate and aluminum nitrate nanohydrate as starting materials and isopropyl alcohol as solvent. The influence of annealing temperature on the film structure and the phase evolution of CuAlO2 films were investigated, so as to obtain CuAlO2 films with superior performance. The phase compositions of the films were dependent on the annealing temperature. The films annealed at temperatures below 400 °C were amorphous while those annealed above 400 °C were polycrystalline. The phases of CuO and CuAl2O4 appeared gradually with the increase of annealing temperature. When the heat treatment temperature was elevated to 900 °C, the uniform and dense films with single phase of CuAlO2 were obtained, with a resistivity of 15 Ωcm. The transmittance of the 310 nm-thick CuAlO2 film is 79% at 780 nm and the direct optical band gap is 3.43 eV.  相似文献   

6.
Homogeneous and transparent ZrO2 thin films were prepared by sol?Cgel dip coating method. The prepared ZrO2 thin films were annealed in air and O2 atmosphere at 500, 700 and 900?°C for 1, 5 and 10?h. X-Ray diffraction (XRD) pattern showed the formation of tetragonal phase with a change of stress in the films. Scanning electron microscope (SEM) revealed the nucleation and particle growth on the films. An average transmittance of >80?% (in UV?CVis region) was observed for all samples. The refractive index and direct energy band gap were found to vary as functions of annealing atmosphere, temperature and time. Photoluminescence (PL) revealed an intense emission peak at 379?nm weak emission peaks at 294, 586 and 754?nm. An enhancement of PL intensity was observed in films annealed in O2 atmosphere. This is due to reconstruction of zirconium nanocrystals interfaces, which help passivate the non-radiative defects. At 900?°C, oxygen atoms react with Zr easily at the interface and destroy the interface states acting as emission centres and quench the PL intensity of the film. The enhancement of the luminescence properties of ZrO2 by the passivation of non radiative defects presents in the films make it suitable for gas sensors development, tuneable lasers and compact disc (CD) read-heads.  相似文献   

7.
Ba[Zr0.25Ti0.75]O3 (BZT) thin films were synthesized by the complex polymerization method and heat treated at 400 °C for different times and at 700 °C for 2 h. These thin films were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, field emission gun-scanning electron microscopy (FEG-SEM) and atomic force microscopy (AFM), Ultraviolet–visible (UV–vis) absorption spectroscopy, electrical and photoluminescence (PL) measurements. FEG-SEM and AFM micrographs showed that the microstructure and thickness of BZT thin films can be influenced by the processing times. Dielectric constant and dielectric loss of BZT thin films heat treated at 700 °C were approximately 148 and 0.08 at 1 MHz, respectively. UV–vis absorption spectra suggested the presence of intermediary energy levels (shallow and deep holes) within the band gap of BZT thin films. PL behavior was explained through the optical band gap values associated to the visible light emission components.  相似文献   

8.
The present paper extensively demonstrates synthesis, characterization and optical properties of semiconductor indium tin oxide (ITO) thin films on glass substrate using sol–gel technique for gas sensor applications. Turbidity, pH values, wettability and rheological properties of the prepared solutions were measured to determine solution characteristics by turbidimeter, pH meter, contact angle goniometer and rheometer machines prior to coating process. Thermal, structural, microstructural, mechanical and optical properties of the coatings were characterized by differential thermal analysis–thermogravimetry (DTA/TG), fourier transform infrarared, X-ray diffraction (XRD), scanning electron microscopy, scratch tester, refractometer and spectrophotometer. Four different solutions were prepared by changing solvent concentration. Turbidity, pH, contact angle and viscosity values of the solutions were convenient for coating process. Glass substrates were coated using the solutions of InCl3, SnCl2, methanol and glacial acetic acid. The obtained gel films were dried at 300 °C for 10 min and subsequently heat-treated at 500 °C for 10 min in air. The oxide thin films were annealed at 600 °C for 60 min in air. DTA/TG results revealed that endothermic and exothermic reactions are observed at temperature between 70 and 560 °C due to solvent removal, combustion of carbon based materials and oxidation of Sn and In. The spectrum of ITO precursor film annealed at 500–600 °C shows an absence of absorption bands corresponding to organics and hydroxyls. In2Sn2O7−x phase was dominantly found as well as SnO2 with low intensity from XRD patterns. It was found that surface morphologies of the film change from coating island with homogeneous structures to regular surface and thinner film structures with increasing solvent concentration. The films prepared from the solutions with 8 mL methanol have better adhesion strength to the glass substrate among other coatings. Refractive index, thickness and band gap of ITO thin films were determined to be 1.3171, 0.625 μm and 3.67, respectively.  相似文献   

9.
Sol–gel derived tungsten oxide (WO3) films have been deposited by spin coating route using acetylated peroxotungstic acid (APTA) or a mixture of APTA and polyethylene glycol (PEG) dissolved in ethanol as the precursor solution, followed by thermal treatment in air. The influence of PEG additive and annealing temperature on the structural and electrochromic (EC) behavior of the films have been investigated. For films annealed at 300 °C, a porous nanocrystalline/amorphous microstructure was obtained in the WO3-PEG film, while monoclinic microstructure was formed in the pure WO3 film. Moreover, for the WO3-PEG films, the film microstructure was found to depend on the annealing temperature. Electrochemical studies indicate that the WO3-PEG film annealed at 300 °C (WP-300) exhibits superior EC properties, which produces faster switching speed (t c = 19 s, t b = 3 s),better reversibility (K = 0.97) as well as higher optical modulation (ΔT = 32% at 550 nm) and coloration efficiency (η = 22 cm2/C at 550 nm). Our results suggest that PEG addition in combination with an appropriate annealing treatment can benefit the EC properties, arising from the ease of ion diffusion within the EC material, as evident from the nanocrystallines embedded into the amorphous matrix with a porous character.  相似文献   

10.
A study was carried out on the steam reforming of bioethanol (15 vol.% ethanol in water) at 250–500 °C on copper catalysts supported on ZrO2 of the monoclinic (Z) and yttrium-stabilized tetragonal crystalline modifications (YSZ). Copper nanoparticles in such catalysts have similar reactivity regardless of the copper content and crystalline modification of the support. Cu/YSZ is highly selective relative to CO2, which may be related to enhanced mobility of oxygen in the support in the presence of Y2O3 stabilizing additive.  相似文献   

11.
Manganese-yttrium-zirconium mixed oxide nanocomposites with three different Mn loadings (5, 15 and 30 wt%) were prepared by sol–gel synthesis. Amorphous xerogels were obtained for each composition. Their structural evolution with the temperature and textural properties were examined by thermogravimetry/differential thermal analysis, X-ray diffraction, diffuse reflectance UV–vis spectroscopy and N2 adsorption isotherms. Mesoporous materials with high surface area values (70–100 m2 g−1) were obtained by annealing in air at 550 °C. They are amorphous or contain nanocrystals of the tetragonal ZrO2 phase (T-ZrO2) depending on the Mn amount and exhibit Mn species with oxidation state higher than 2 as confirmed by temperature programmed reduction experiments. T-ZrO2 is the only crystallizing phase at 700 °C while the monoclinic polymorph and Mn3O4 start to appear only after a prolonged annealing at 1,000 °C. The samples annealed at 550 °C were studied as catalysts for H2O2 decomposition in liquid phase. Their catalytic activity was higher than that of previously studied Mn/Zr oxide systems prepared by impregnation. Catalytic data were described by a rate equation of Langmuir type. The decrease of catalytic activity with time was related to dissolution of a limited fraction (up to 15%) of Mn into the H2O2/H2O solution.  相似文献   

12.
The Pb doped metastable tetragonal ZrO2 (t-ZrO2:Pb) nanoparticles have been successfully synthesized by hydrothermal method. Pb ion doping has great effects on the phases, crystallite sizes and optical band gaps. Systematic structural characterization revealed that the introduction of Pb ion results in lattice expansion. The as-prepared t-ZrO2:Pb with ca 4–6 nm in size has high specific surface area (>150 m2/g) and narrow particle size distributions. The diffuse reflectance spectra investigated that the band gap shifts from ultraviolet (Eg = 5.19 eV) for pure ZrO2 to the visible region for t-ZrO2:Pb and the gap can be effectively adjusted with the content of Pb in nanocrystals. Through thermal treatment, Pb ion doped in ZrO2 crystals was excluded with increasing temperature. At 800 °C, the three t-ZrO2:Pb samples of ZPO-2, ZPO-3 and ZPO-4 still contained the pure tetragonal phase, in which Pb content were not reduced to zero, while the transformation from tetragonal to monoclinic phase occurred due to zero Pb content in ZPO-1. The reason to this transformation and stabilized mechanism of Pb ion in ZrO2 were discussed.  相似文献   

13.
We have studied structural and optical properties of thin films of TiO2, doped with 5% ZnO and deposited on glass substrate (by the sol–gel method). Dip-coated thin films have been examined at different annealing temperatures (350–450 °C) and for various layer thicknesses (89–289 nm). Refractive index, porosity and energy band gap were calculated from the measured transmittance spectrum. The values of the index of refraction are in the range of 1.97–2.44, the porosity is in the range of 0.07–0.46 and the energy band gap is in the range of 3.32–3.43. The coefficient of transmission varies from 50 to 90%. In the case of the powder of TiO2, doped with 5% ZnO, and aged for 3 months in ambient temperature, we have noticed the formation of the anatase phase (tetragonal structure with 20.23 nm grains). However, the undoped TiO2 exhibits an amorphous phase. After heat treatments of thin films, titanium oxide starts to crystallize at the annealing temperature 350 °C. The obtained structures are anatase and brookite. The calculated grain size, depending on the annealing temperature and the layer thickness, is in the range of 8.61–29.48 nm.  相似文献   

14.
《Solid State Sciences》2012,14(9):1282-1288
SnO2 thin films were deposited on glass substrates by using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The film thickness effect on characteristic parameters such as structural, morphological, optical and electrical properties of the films was studied. Also, the films were annealed in oxygen atmosphere (400 °C, 30 min) and characteristic parameters of the films were investigated. The X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) studies showed that all the films exhibited polycrystalline nature with tetragonal structure and were covered well on glass substrates. After the investigation of the crystalline and surface properties of the films, it was found that they were improving with increasing film thickness. Optical band gap decreased from 3.90 eV to 3.54 eV and electrical conductivity changed between 0.015–0.815 (Ω-cm)−1 as the film thickness increased from 215 to 490 nm. The refractive index (n), optical static and high frequency dielectric constants (ɛo, ɛ) values were calculated by using the optical band gap values as a function of the film thickness.  相似文献   

15.
ZnO thin films were deposited onto glass subsrates by a Sol-gel spin coating method. The structural and optical properties of ZnO thin films were investigated. The molar ratios of the zinc acetate dihydrate to Monoethanolamine were maintained 1:1. The as-grown film was sintered 250 °C for 10 min, then annealed in air at 500 °C for 30 min. The XRD results indicate that ZnO films were strongly oriented to the c-axis of the hexagonal nature. Absorption measurements were carried out as a function of temperature with 10 K steps in the range 10–320 K. The band gap energy was measured 3.275 and 3.267 eV for 0.5 and 1.0 molarity (M) ZnO thin films at 300 K. The steepness parameters were observed between 10 and 320 K and their extrapolations converged at (E0, α0) = 3.65 eV, 172,819 cm−1 and 3.70 eV, 653,436 cm−1 for 0.5 and 1.0 M ZnO thin films, respectively.  相似文献   

16.
Vanadium dioxide (VO2) thin films were fabricated on single crystal Si (100) substrates by sol–gel method, including a process of annealing a vanadium pentoxide (V2O5) gel precursor at different temperatures. The crystalline structure and morphology of the films were investigated by XRD, FE-SEM and AFM, indicating that the films underwent the grain growth, agglomeration and grain refinement process with increased annealing temperatures. The film annealed at 500 °C exhibits the formation of VO2 phase with a strong (011) preferred orientation and high crystallinity, the surface of the film is uniform and compact with a grain size of about 120 nm. Meanwhile, the film exhibits excellent phase transition properties, with a decrease of transmittance from 35.5 to 2.5% at λ = 25 μm and more than 3 orders of resistivity magnitude variation bellow and above the phase transition temperature. The phase transition temperature is evaluated at 60.4 °C in the heating transition and 55.8 °C in the cooling transition. Furthermore, the phase transition property of the VO2 film appears to be able to remain stable over repetitive cycles 100 times.  相似文献   

17.
 The structure and the gasochromic properties of sol-gel-derived WO3 films with a monoclinic structure (m-WO3) were studied by focusing attention on the size of the monoclinic grains. The size of the m-WO3 grains is modified by the addition of an organic–inorganic hybrid to the initial peroxopolytungstic acid (W-PTA) sols which are based on chemically bonded poly-(propylene glycol) to triethoxysilane end-capping groups (ICS-PPG). The results obtained with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the heat treatment (500°C) of WO3/ICS-PPG (0.5, 1, 2, 5, and 10 mol%) composite films results in a change of their morphology, and nanodimensional pores are formed between the grains. High-resolution TEM (HRTEM) analysis revealed the presence of an amorphous phase on the outside of the m-WO3 grains, whereas energy-dispersive X-ray spectra (EDXS) showed that this amorphous phase contained W and Si. Impregnation of the WO3/ICS-PPG film with H2PtCl6/i-propanol solution followed by heat treatment at 380°C gave the films their gasochromic properties. Infrared and Raman spectroscopic studies of the WO3/ICS-PPG film confirmed the results of the corresponding HRTEM and EDXS analysis. In situ UV/Vis and in situ IR spectra of the films were measured in hydrogen and in air, and colouring/bleaching changes and the corresponding kinetics were assessed. The IR spectra of gasochromically coloured films showed that the mesoporous WO3/ICS-PPG (1 mol%) film transforms to tetragonal H x WO3 bronze. The IR spectra of the H x WO3 bronze are discussed with the aim to establish the existence of the metal-OH vibrations of gasochromically formed oxyhydroxide tungsten bronze.  相似文献   

18.
Anatase Ti0.94Nb0.06O2 (TNO) films were fabricated on glass substrates by sol–gel method using a dip-coating technique. The annealing treatment was separated into two steps, first in air at 350–550 °C for 1 h and then in vacuum of 4.0 × 10−4 Pa at 550 °C for 1 h. The influence of vacuum annealing treatment to the electrical and optical properties was discussed. Especially, the role of air annealing treatment from 350 to 550 °C on the crystallization and the structure of the films was analyzed. It is proved that the films annealed at 550 °C in air and then 550 °C in vacuum exhibited the minimum resistivity of 19.3 Ω·cm and the average optical transmittance of about 75% in the visible range, indicating that the sol–gel method is a feasible and promising method to fabricate TNO films.  相似文献   

19.
Al2O3/ZrO2 duplex films were deposited on a γ-TiAl based alloy by sol–gel processing starting from aluminum isopropoxide (Al(OC3H7)3) and zirconium (IV) oxychloride octahydrate (ZrOCl2 · 8H2O) as raw materials. Isothermal oxidation at 900 and 1,000 °C in 0.1 MPa O2 and cyclic oxidation at 1,000 °C in air of the coated and uncoated specimens were performed to investigate the effect of the duplex films on the oxidation behavior of the γ-TiAl alloy. The results of the isothermal oxidation tests indicated that the parabolic rate constants of the alloy were decreased due to the applied thin film. Additionally, the present film exhibited a beneficial effect on the cyclic oxidation resistance of the alloy in air. The duplex film could restrain the growth of TiO2, causing an increase of the Al2O3 content in the oxide mixture and thus decreased the oxidation rate.  相似文献   

20.
Copper monoxide (CuO) was successfully obtained by microwave-assisted hydrothermal method, using different conditions—in a solution without base, in a solution alkalinized with NaOH or with NH4OH. The powders were analyzed by thermal analysis (TG/DTA), X-ray diffraction (XRD), infrared spectroscopy, UV–Visible spectroscopy, and scanning electronic microscopy. XRD results showed that CuO was obtained with monoclinic structure and without secondary phases. Thermal analysis and infrared spectra indicated the presence of acetate groups on the powder surface. TG curves also showed a mass gain assigned to the Cu(I) oxidation indicating that a reduction possibly occurred during synthesis. The high and broad absorption band in the UV–Vis spectroscopy from 250 to 750 nm indicated the coexistence of Cu(II) and Cu(I), confirming the Cu(II) reduction, inside the CuO lattice. It was also possible to confirm the Cu(II) reduction by a displacement of the Me–O vibration bands observed in the IR spectra at around 500 cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号