首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Metal-oxide interfaces are of great importance in catalytic applications since each material can provide a distinct functionality that is necessary for efficient catalysis in complex reaction pathways. Moreover, the synergy between two materials can yield properties that exceed the superposition of single sites. While interfaces between metals and metal oxides can play a key role in the reactivity of traditional supported catalysts, significant attention has recently been focused on using “inverted” oxide/metal catalysts to prepare catalytic interfaces with unique properties. In the inverted systems, metal surfaces or nanoparticles are covered by oxide layers ranging from submonolayer patches to continuous films with thickness at the nanometer scale. Inverse catalysts provide an alternative approach for catalyst design that emphasizes control over interfacial sites, including inverted model catalysts that provide an important tool for elucidation of mechanisms of interfacial catalytic reactions and oxide-coated metal nanoparticles that can yield improved stability, activity and selectivity for practical catalysts.This review begins by providing a summary of recent progress in the use of inverted model catalysts in surface science studies, where oxides are usually deposited onto the surface of metal single crystals under ultra-high vacuum conditions. Surface-level studies of inverse systems have yielded key insights into interfacial catalysis and facilitated active site identification for important reactions such as CO oxidation, the water-gas shift reaction, and CO2 reduction using well-defined model systems, informing strategies for designing improved technical catalysts. We then expand the scope of inverted catalysts, using the “inverse” strategy for preparation of higher-surface area practical catalysts, chiefly through the deposition of metal oxide films or particles onto metal nanoparticles. The synthesis techniques include encapsulation of metal nanoparticles within porous oxide shells to generate core-shell type catalysts using wet chemical techniques, the application of oxide overcoat layers through atomic layer deposition or similar techniques, and spontaneous formation of metal oxide coatings from more conventional catalyst geometries under reaction or pretreatment conditions. Oxide-coated metal nanoparticles have been applied for improvement of catalyst stability, control over transport or binding to active sites, direct modification of the active site structure, and formation of bifunctional sites. Following a survey of recent studies in each of these areas, future directions of inverted catalytic systems are discussed.  相似文献   

2.
Asymmetric catalysis is a powerful component of modern synthetic organic chemistry. To further broaden the scope and utility of asymmetric catalysis, new basic concepts for the design of asymmetric catalysts are crucial. Because most chemical reactions involve bond-formation between two substrates or moieties, high enantioselectivity and catalyst activity should be realized if an asymmetric catalyst can activate two reacting substrates simultaneously at defined positions. Thus, we proposed the concept of bifunctional asymmetric catalysis, which led us to the design of new asymmetric catalysts containing two functionalities (e.g. a Lewis acid and a Brønsted base or a Lewis acid and a Lewis base). These catalysts demonstrated broad reaction applicability with excellent substrate generality. Using our catalytic asymmetric reactions as keys steps, efficient total syntheses of pharmaceuticals and their biologically active lead natural products were achieved.  相似文献   

3.
The chemistry and technology of new versatile multipurpose catalytic systems developed and studied by the authors for the purposes of heterogeneous catalysis are reviewed. A theoretical background for a successful search for these new catalytic systems is based on an unconventional approach with emphasis on an essential role of branched-chain reaction mechanisms of heterogeneous catalysis previously developed by the authoring team. The catalytic systems under study are based on silica (aluminoborosilicate) glass-fiber amorphous matrices doped with various metals and manufactured as articles with various types of woven structure. The specific features of these glass-fiber woven catalytic systems, such as their structure, phase state of the matrix, manufacture and activation methods, design of catalytic reactors in which they operate, as well as production technologies and operation methods, make a compelling case to regard them as a new separate class of catalysts. As compared to conventional catalytic materials, these new catalysts are highly efficient in neutralizing industrial gas emissions, in contact stages of the production of nitric acid and sulfuric acid, in various reactions of catalytic hydrocarbon processing, in water purification from nitrate and nitrite contaminants, in catalytic heat generation, etc.  相似文献   

4.
Ceria (CeO2) as a support, additive, and active component for heterogeneous catalysis has been demonstrated to have great catalytic performance, which includes excellent thermal structural stability, catalytic efficiency, and chemoselectivity. Understanding the surface properties of CeO2 and the chemical reactions occurred on the corresponding interfaces is of great importance in the rational design of heterogeneous catalysts for various reactions. In general, the reversible Ce3+/Ce4+ redox pair and the surface acid-base properties contribute to the superior intrinsic catalytic capability of CeO2, and hence yield enhanced catalytic phenomenon in many reactions. Particularly, nanostructured CeO2 is characterized by a large number of surface-bound defects, which are primarily oxygen vacancies, as the surface active catalytic sites. Many efforts have therefore been made to control the surface defects and properties of CeO2 by various synthetic strategies and post-treatments. The present review provides a comprehensive overview of recent progress in regulating the surface structure and composition of CeO2 and its applications in catalysis.  相似文献   

5.
The search for more efficient catalytic systems that might combine the advantages of both homogeneous (catalyst modulation) and heterogeneous (catalyst recycling) catalysis is one of the most exciting challenges of modern chemistry. More recently with the advances of nanochemistry, it has been possible to prepare soluble analogues of heterogeneous catalysts. These nanoparticles are generally stabilized against aggregation into larger particles by electrostatic or steric protection. Herein we demonstrate the use of room temperature ionic liquid for the stabilization of palladium nanoparticles that are recyclable catalysts for the hydrogenation of carbon–carbon double bonds and application of these catalysts to the selective hydrogenation of internal or terminal C=C bonds in unsaturated primary alcohols. The particles suspended in room temperature ionic liquid show no metal aggregation or loss of catalytic activity even on prolonged use.  相似文献   

6.
Sonochemical processes involved in asymmetric synthesis are reviewed. The goal of this overview is to provide a comprehensive picture about the fields of both enantioselective and diastereoselective reactions accelerated or initiated by ultrasounds. Since the most, in many cases comparative, data are available in heterogeneous metal catalysis, the emphasis will be placed on these enantioselective hydrogenations, however, other applications such as phase transfer catalysis etc. will also be cited.  相似文献   

7.
Among the various green keys, catalysis, especially using heterogeneous catalysts, has been powerfully applied to achieve greener chemical processes. Here are presented nanoporous materials which have mesoporosity with the functional groups on the inner pore walls. The materials were synthesized via a rather greener process, such as microwave synthesis, and over these nanocatalysts some of the green chemical reactions were carried out with high activities and selectivities. Cobalt species has been successfully functionalized and stabilized as a Co(III) complex onto SBA-15 support and proven to be an active catalyst in alkylaromatic oxidation with molecular oxygen, styrene epoxidation with tert-butyl hydroperoxide (TBHP), and allylic oxidation of cycloolefins with H2O2. Short-channeled amino-functionalized SBA-15 catalyst with hexagonal plate morphology was synthesized directly by using microwave synthesis from the co-condensation of aminopropyl triethoxysilane (APTES) and sodium metasilicate under a strong acidic condition. The catalyst showed high catalytic activity in liquid-phase Knoevenagel condensation reactions, due to easy diffusion and mass transfer of substrates into the short mesopore channel. The HO3S–SBA-15 was prepared by grafting of mercaptopropyl trimethoxysilane onto the calcined mesoporous silica surface and subsequently oxidized with H2O2. The resulting catalyst was applied as a Bronsted solid-acid catalyst for the esterification of oleic acid with methanol.  相似文献   

8.
《Current Applied Physics》2015,15(9):993-999
Pt-transition metal alloy catalysts with an active Pt surface have exceptional properties for use in oxygen electro-reduction reactions in fuel cells. Herein, we report the simple synthesis of dealloyed PtCu catalysts and their catalytic performance in oxygen reduction. The dealloyed PtCu catalysts consisted of a Pt-enriched shell with a Pt–Cu alloy core and were synthesized through a chemical co-reduction process followed by thermal annealing and chemical dealloying. During synthesis, thermal annealing leads to a high degree of formation of PtCu alloy particles (e.g., PtCu or PtCu3), and chemical dealloying causes selective dissolution of unstable Cu species from the surface layers of the PtCu alloy particles, resulting in a PtCu alloy@Pt-enriched surface core–shell configuration. Our PtCu3/C catalyst exhibits a great improvement in the oxygen reduction reaction with a mass activity of 0.501 A/mgPt, which is 2.24 times greater than that of a commercial Pt catalyst. In this article, the synthesis details, characteristics and performance improvements in ORR of chemically dealloyed PtCu catalysts are systemically explained.  相似文献   

9.
Heterogeneous palladium (Pd)‐based catalysts are extensively applied to improve the catalytic performance and/or expand the reaction scope in many catalytic processes, involving the cross‐coupling, hydrogenation, reduction, and oxidation reactions. Among them, metal–organic framework (MOF)‐supported Pd nanoparticles (Pd NPs) are becoming the most popular one for their excellent catalytic performance and reusable property. To motivate the development of this technology, the applications of MOF‐supported Pd NPs (Pd NPs/MOFs) in heterogeneous catalysis are critically summarized herein, including the hydrogenation reduction of nitro‐ and polyunsaturated compounds, synthesis of carbon–carbon (C? C) bonds compounds, chromium (Cr(VI)) reduction, dehalogenation, alcohol oxidation, CO2 conversion, and CO oxidation. The influences of base, solvents, electron character of substitutes, and type of halogen on the catalytic performance are comprehensively discussed. Finally, the application prospects of Pd NPs/MOFs and existing shortcomings in the catalytic field are proposed.  相似文献   

10.
A series of carbon nanotubes-supported K-Co-Mo catalysts were prepared by a sol-gel method combined with incipient wetness impregnation.The catalyst structures were characterized by X-ray diffraction,N2 adsorption-desorption,transmission electron microscopy and H2-TPD,and its catalytic performance toward the synthesis of higher alcohols from syngas was investigated.The as-prepared catalyst particles had a low crystallization degree and high dispersion on the outer and inner surface of CNTs.The uniform mesoporous structure of CNTs increased the diffusion rate of reactants and products,thus promoting the reaction conversion.Furthermore,the incorporation of CNTs support led to a high capability of hydrogen absorption and spillover and promoted the formation of alkyl group,which served as the key intermediate for the alcohol formation and carbon chain growth.Benefiting from these characteristics,the CNTs supported Mo-based catalyst showed the excellent catalytic performance for the higher alcohols synthesis as compared to the unsupported catalyst and activated carbon supported catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号