首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Abstract

We approximate the normal inverse Gaussian (NIG) process with random summations. The random sum we introduce is a random walk subordinated to the first passage time of another independent random walk; the model is interpreted as an internal mechanism at small scale that generates the NIG process. The main result is a functional limit theorem of weak convergence in the Skorohod topology.  相似文献   

2.
Normal inverse Gaussian (NIG) process was introduced by Barndorff-Nielsen (Scand J Statist 24:1–13, 1997) by subordinating Brownian motion with drift to an inverse Gaussian process. Increments of NIG process are independent and are stationary. In this paper, we introduce dependence between the increments of NIG process, by subordinating fractional Brownian motion to an inverse Gaussian process and call it fractional normal inverse Gaussian (FNIG) process. The basic properties of this process are discussed. Its marginal distributions are scale mixtures of normal laws, infinitely divisible for the Hurst parameter 1/2 ≤ H < 1 and are heavy tailed. First order increments of the process are stationary and possess long-range dependence (LRD) property. It is shown that they have persistence of signs LRD property also. A generalization to an n-FNIG process is also discussed, which allows Hurst parameter H in the interval (n − 1, n). Possible applications to mathematical finance and hydraulics are also pointed out.  相似文献   

3.
Subordinating a random walk to a renewal process yields a continuous time random walk (CTRW), which models diffusion and anomalous diffusion. Transition densities of scaling limits of power law CTRWs have been shown to solve fractional Fokker-Planck equations. We consider limits of CTRWs which arise when both waiting times and jumps are taken from an infinitesimal triangular array. Two different limit processes are identified when waiting times precede jumps or follow jumps, respectively, together with two limit processes corresponding to the renewal times. We calculate the joint law of all four limit processes evaluated at a fixed time t.  相似文献   

4.
A continuous time random walk is a random walk subordinated to a renewal process used in physics to model anomalous diffusion. In this paper, we establish a Chung-type law of the iterated logarithm for continuous time random walk with jumps and waiting times in the domains of attraction of stable laws.  相似文献   

5.
We prove the chain rule in the more general framework of the Wiener–Poisson space, allowing us to obtain the so-called Nourdin–Peccati bound. From this bound, we obtain a second-order Poincaré-type inequality that is useful in terms of computations. For completeness we survey these results on the Wiener space, the Poisson space, and the Wiener–Poisson space. We also give several applications to central limit theorems with relevant examples: linear functionals of Gaussian subordinated fields (where the subordinated field can be processes like fractional Brownian motion or the solution of the Ornstein–Uhlenbeck SDE driven by fractional Brownian motion), Poisson functionals in the first Poisson chaos restricted to infinitely many “small” jumps (particularly fractional Lévy processes), and the product of two Ornstein–Uhlenbeck processes (one in the Wiener space and the other in the Poisson space). We also obtain bounds for their rate of convergence to normality.  相似文献   

6.
We prove large deviation principles for the almost everywhere central limit theorem, assuming that the i.i.d. summands have finite moments of all orders. The level 3 rate function is a specific entropy relative to Wiener measure and the level 2 rate the Donsker-Varadhan entropy of the Ornstein-Uhlenbeck process. In particular, the rate functions are independent of the particular distribution of the i.i.d. process under study. We deduce these results from a large deviation theory for Brownian motion via Skorokhod's representation of random walk as Brownian motion evaluated at random times. The results for Brownian motion come from the well-known large deviation theory of the Ornstein-Uhlenbeck process, by a mapping between the two processes.  相似文献   

7.
A continuous time random walk (CTRW) is a random walk subordinated to a renewal process, used in physics to model anomalous diffusion. Transition densities of CTRW scaling limits solve fractional diffusion equations. This paper develops more general limit theorems, based on triangular arrays, for sequences of CTRW processes. The array elements consist of random vectors that incorporate both the random walk jump variable and the waiting time preceding that jump. The CTRW limit process consists of a vector-valued Lévy process whose time parameter is replaced by the hitting time process of a real-valued nondecreasing Lévy process (subordinator). We provide a formula for the distribution of the CTRW limit process and show that their densities solve abstract space–time diffusion equations. Applications to finance are discussed, and a density formula for the hitting time of any strictly increasing subordinator is developed.  相似文献   

8.
Stein’s method on Wiener chaos   总被引:1,自引:0,他引:1  
We combine Malliavin calculus with Stein’s method, in order to derive explicit bounds in the Gaussian and Gamma approximations of random variables in a fixed Wiener chaos of a general Gaussian process. Our approach generalizes, refines and unifies the central and non-central limit theorems for multiple Wiener–Itô integrals recently proved (in several papers, from 2005 to 2007) by Nourdin, Nualart, Ortiz-Latorre, Peccati and Tudor. We apply our techniques to prove Berry–Esséen bounds in the Breuer–Major CLT for subordinated functionals of fractional Brownian motion. By using the well-known Mehler’s formula for Ornstein–Uhlenbeck semigroups, we also recover a technical result recently proved by Chatterjee, concerning the Gaussian approximation of functionals of finite-dimensional Gaussian vectors.  相似文献   

9.
A model of complex-valued fractional Brownian motion has been built up recently as the limit of a random walk in the complex plane, but this model involves radial steps only. It is shown that, by using non-radial steps, this model can be easily extended to define a fractional Brownian motion with complex-valued variance. The relations between complex-valued Brownian motion and the heat equation of order n is clarified and mainly one obtains the general expression of the probability density functions for these processes. One shows that the maximum entropy principle (MPE) provides the probability density of the complex-valued fractional Brownian motion, exactly like for the standard Brownian motion. And lastly, one shows that the heat equation of order 2n (which is the Fokker–Planck equation (FPE) of the complex-valued Brownian motion) has a solution which is similar to that of the FPE of fractional order introduced before by the author, therefore, to some extent, an identification between the complex-valued model via random walk in the complex plane and the model involving a derivative of fractional order.  相似文献   

10.
The (complex-valued) Brownian motion of order n is defined as the limit of a random walk on the complex roots of the unity. Real-valued fractional noises are obtained as fractional derivatives of the Gaussian white noise (or order two). Here one combines these two approaches and one considers the new class of fractional noises obtained as fractional derivative of the complex-valued Brownian motion of order n. The key of the approach is the relation between differential and fractional differential provided by the fractional Taylor’s series of analytic function , where E is the Mittag–Leffler function on the one hand, and the generalized Maruyama’s notation, on the other hand. Some questions are revisited such as the definition of fractional Brownian motion as integral w.r.t. (dt), and the exponential growth equation driven by fractional Brownian motion, to which a new solution is proposed. As a first illustrative example of application, in mathematical finance, one proposes a new approach to the optimal management of a stochastic portfolio of fractional order via the Lagrange variational technique applied to the state moment dynamical equations. In the second example, one deals with non-random Lagrangian mechanics of fractional order. The last example proposes a new approach to fractional stochastic mechanics, and the solution so obtained gives rise to the question as to whether physical systems would not have their own internal random times.  相似文献   

11.
We show that geometric Brownian motion with parameter μ, i.e., the exponential of linear Brownian motion with drift μ, divided by its quadratic variation process is a diffusion process. Taking logarithms and an appropriate scaling limit, we recover the Rogers-Pitman extension to Brownian motion with drift of Pitman's representation theorem for the three-dimensional Bessel process. Time inversion and generalized inverse Gaussian distributions play crucial roles in our proofs.  相似文献   

12.
We consider a random walk among unbounded random conductances whose distribution has infinite expectation and polynomial tail. We prove that the scaling limit of this process is a Fractional-Kinetics process??that is the time change of a d-dimensional Brownian motion by the inverse of an independent ??-stable subordinator. We further show that the same process appears in the scaling limit of the non-symmetric Bouchaud??s trap model.  相似文献   

13.
A continuous time random walk (CTRW) is a random walk in which both spatial changes represented by jumps and waiting times between the jumps are random. The CTRW is coupled if a jump and its preceding or following waiting time are dependent random variables (r.v.), respectively. The aim of this paper is to explain the occurrence of different limit processes for CTRWs with forward- or backward-coupling in Straka and Henry (2011) [37] using marked point processes. We also establish a series representation for the different limits. The methods used also allow us to solve an open problem concerning residual order statistics by LePage (1981) [20].  相似文献   

14.
We consider anisotropic self-similar random fields, in particular, the fractional Brownian sheet (fBs). This Gaussian field is an extension of fractional Brownian motion. It is well known that the fractional Brownian motion is a unique Gaussian self-similar process with stationary increments. The main result of this article is an example of a Gaussian self-similar field with stationary rectangular increments that is not an fBs. So we proved that the structure of self-similar Gaussian fields can be substantially more involved then the structure of self-similar Gaussian processes. In order to establish the main result, we prove some properties of covariance function for self-similar fields with rectangular increments. Also, using Lamperti transformation, we obtain properties of covariance function for the corresponding stationary fields.  相似文献   

15.
By using a very simple model of random walk defined on the roots of the unity in the complex plane, one can obtain the model of fractional brownian motion of order n which has been previously introduced in the form of rotating Gaussian white noise. This definition of fractional Brownian motion of order n as the limit of complex random walk, provides new insights in its genuine practical meaning, and in the derivation of most of the related theoretical results. Itôs stochastic calculus can be extended in a straightforward manner to the path integral so generated in the complex plane. The corresponding probability distribution is stable in Levys sense, a Lindebergs like central limit theorem is stated, together with a Feyman–Kacs formula and a Dinkins formula. Then one exhibits the relation between the Hausdorffs dimension and the pattern entropy of the process. The probabilistic approach here is different from Hochbergs and Mandelbrots. Like Saintys, it uses the complex roots of the unity, but it is much more straightforward and simple, and it is the only one which provides results which are fully consistent with the so-called Kramers–Moyal expansion.  相似文献   

16.
 Kesten and Spitzer have shown that certain random walks in random sceneries converge to stable processes in random sceneries. In this paper, we consider certain random walks in sceneries defined using stationary Gaussian sequence, and show their convergence towards a certain self-similar process that we call fractional Brownian motion in Brownian scenery. Received: 17 April 2002 / Revised version: 11 October 2002 / Published online: 15 April 2003 Research supported by NSFC (10131040). Mathematics Subject Classification (2002): 60J55, 60J15, 60J65 Key words or phrases: Weak convergence – Random walk in random scenery – Local time – Fractional Brownian motion in Brownian scenery  相似文献   

17.
The authors study approximation to the partial sum processes which is based on the stationary sequences of random variables having the structure of the so-called moving averages of independent identically distributed observations. In particular, the rates of convergence both in Donsker's and Strassen's invariance principles are obtained in the case when the limit Gaussian process is a fractional Brownian motion with an arbitrary Hurst parameter.  相似文献   

18.
Whitt  Ward 《Queueing Systems》2000,36(1-3):39-70
We review functional central limit theorems (FCLTs) for the queue-content process in a single-server queue with finite waiting room and the first-come first-served service discipline. We emphasize alternatives to the familiar heavy-traffic FCLTs with reflected Brownian motion (RBM) limit process that arise with heavy-tailed probability distributions and strong dependence. Just as for the familiar convergence to RBM, the alternative FCLTs are obtained by applying the continuous mapping theorem with the reflection map to previously established FCLTs for partial sums. We consider a discrete-time model and first assume that the cumulative net-input process has stationary and independent increments, with jumps up allowed to have infinite variance or even infinite mean. For essentially a single model, the queue must be in heavy traffic and the limit is a reflected stable process, whose steady-state distribution can be calculated by numerically inverting its Laplace transform. For a sequence of models, the queue need not be in heavy traffic, and the limit can be a general reflected Lévy process. When the Lévy process representing the net input has no negative jumps, the steady-state distribution of the reflected Lévy process again can be calculated by numerically inverting its Laplace transform. We also establish FCLTs for the queue-content process when the input process is a superposition of many independent component arrival processes, each of which may exhibit complex dependence. Then the limiting input process is a Gaussian process. When the limiting net-input process is also a Gaussian process and there is unlimited waiting room, the steady-state distribution of the limiting reflected Gaussian process can be conveniently approximated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
We consider a random walk that converges weakly to a fractional Brownian motion with Hurst index H > 1/2. We construct an integral-type functional of this random walk and prove that it converges weakly to an integral constructed on the basis of the fractional Brownian motion. __________ Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 59, No. 8, pp. 1040–1046, August, 2007.  相似文献   

20.
In this paper, we first prove that one-parameter standard α-stable sub-Gaussian processes can be approximated by processes constructed by integrals based on the Poisson process with random intensity. Then we extend this result to the two-parameter processes. At last, we consider the approximation of the subordinated fractional Brownian motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号