首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large coherent structures of turbulent boundary layer in the vicinity of separation were observed in a water channel by the hydrogen bubble method. Motion pictures of the de views were taken. The features of the instantaneous velocity profiles, the large transverse and streamwise vortices were discussed.  相似文献   

2.
When the air temperature reaches 600 K or higher, vibration is excited. The specific heat is not a constant but a function of temperature. Under this condition, the transition position of hypersonic sharp wedge boundary layer is predicted by using the improved eN method considering variable specific heat. The transition positions with different Mach numbers of oncoming flow, half wedge angles, and wall conditions are computed condition, the nearer to the Mach number The results show that for the same oncoming flow condition and wall transition positions of hypersonic sharp wedge boundary layer move much leading edge than those of the flat plate. The greater the oncoming flow the closer the transition position to the leading edge.  相似文献   

3.
Boundary layers that develop over a body in fluid flow are in most cases three-dimensional owing to the spin, yaw, or surface curvature of the body. Therefore, the study of three-dimensional (3D) boundary-layer transition is essential to work in practical aerodynamics. The present investigation is concerned with the problem of 3D boundary layers over a yawed body. A yawed cylinder model that represents the leading edge portion of a swept wing and the mechanism of crossflow instability are investigated in detail using hot-wire velocimetry and a flow visualization technique. As a result, traveling disturbances having frequencies f1 and f2, which differ by about one order of magnitude, are detected in the transition region. The phase velocities and directions of travel of those disturbances are measured. Results for the low-frequency disturbance f1 show qualitative coincidence with results numerically predicted for a crossflow unsteady disturbance. Nameley, F1 travels nearly spanwise to the yawed cylinder and very close to the cylinder wall. The results for the high-frequency disturbance f2 good agreement with the existing experimental results. The 2 disturbance is found to be the high-frequency inflectional secondary instability that appears in 3D boundary layer transition in general. A two-stage transition process, where stationary crossflow vortices appear as the primary instability and a traveling inflectional disturbance is generated as a secondary instability, was observed. Secondary instability seems to play a major role in turbulent transition.  相似文献   

4.
流体边界层上电磁力的控制效应研究   总被引:13,自引:1,他引:13  
利用作用于流体边界层上的电磁体积力改变流体边界层的结构,研究电磁力对流场的控制 作用效果. 电极与磁极交替分布的电磁场激活板包覆在圆柱体表面置于流动的电解质溶液 中,产生的电磁力沿圆柱体表面分布,可以改变流体边界层的结构,从而实现对流场的控制. 用电磁屏蔽和时域控制的方法调整电磁力的时空分布参数,圆柱绕流分离点可以在前驻点和 后驻点之间变动,产生不同的控制效果. 流体边界层上的电磁力能连续控制圆柱绕流、尾流 涡街的形态. 正向电磁力具有较好的消涡、减震和减阻控制效应. 反向电磁力具有明显的增 涡控制效应,具有较强的制动控制效应,此时圆柱体表面涡量分布的对称性和稳定性被破坏.  相似文献   

5.
The effect of the leading edge shape and the turbulence scale on laminar-turbulent transition in the flat-plate boundary layer due to grid turbulence is investigated. In the experiments, the turbulence scale was changed by a factor of three and the bluntness radius of the edge by a factor of four, all other factors being fixed. It is shown that on the plate with a sharp edge the fluctuation growth rate and the laminar-turbulent transition point depend nonmonotonically on the turbulence scale. On the blunt plate transition occurs considerably earlier than on the sharp plate.  相似文献   

6.
A numerical method developed for simulating three-dimensional incompressible boundary layer flow is presented. K-type transition up to the two-spike stage is simulated, and flow topologies at various stages of transition are determined. Comparison with flow topologies from other simulations of turbulent and transitioning flows is made. Financial support provided by Air Operations Division, Aeronautical and Maritime Research Laboratory, Defence Science and Technology Organisation, Australia.  相似文献   

7.
Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the prac-ticability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disinte-grates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17%occurs with a triangular shape, while the max-imum increase in aerodynamic efficiency (lift-to-drag ratio) of around 10%happens with a rectangular shape at an angle of attack of 2.26?.  相似文献   

8.
IntroductionNonlinearstabilityprobleminnonparallelboundarylayersneedsmainlyconsidertheevolutionofunstabilityT_Swaveandinteractionbetweenwavesofdifferentfrequencies.Itisveryimportanttosimulateaccuratelyspatialevolutionroleofdisturbanceinboundarylayers,…  相似文献   

9.
Spatial mode direct numerical simulation has been applied to study the mechanism of breakdown in laminar-turbulent transition of a supersonic boundary layer on a flat plate with Mach number 4.5. Analysis of the result showed that, during the breakdown process in laminar-turbulent transition, the mechanism causing the mean flow profile to evolve swiftly from laminar to turbulent was that the modification of mean flow profile by the disturbance, when they became larger, leads to remarkable change of its stability characteristics. Though the most unstable T-S wave was of second mode for laminar flow, the first mode waves played the key role in the breakdown process in laminar-turbulent transition.  相似文献   

10.
Local flows in a laminar boundary layer flowing over surface heating elements are investigated. Mathematical models of disturbed flows are constructed on the basis of an asymptotic analysis and the similarity parameters are determined. The time-dependent local heating regimes ensuring control of separation and flow stability in the boundary layer are studied. The results of a numerical and analytic analysis are obtained.  相似文献   

11.
Disturbances generated by external turbulence in the boundary layer on a flat plate set suddenly in motion are determined by numerically solving the Navier-Stokes equations. The results of direct numerical simulation of isotropic homogenous turbulence are taken as initial conditions. The solution obtained models laminar-turbulent transition in the flat-plate boundary layer at a high freestream turbulence level, time measured from the onset of the motion serving as the longitudinal coordinate. The solution makes it possible to estimate the effect of different factors, such as flow unsteadiness and nonlinearity and the characteristics of the freestream velocity fluctuation spectrum, on laminar-turbulent transition in the boundary layer.  相似文献   

12.
IntroductionRecently ,theproblemoftransitioninsupersonicboundarylayershasattractedmoreandmoreattentionduetoitstechnicalimportance .Uptonow ,mostanalyseswerelinearanalysis,anddetailedexperimentsareveryrare .Somepeoplehavetriedtoextendthenonlineartheoryofh…  相似文献   

13.
In this paper, an experimental investigation on the flow structures in a turbulent boundary layer employing a special laser light sheet-Hydrogen bubble flow visualization technique is described. It is observed that the high/low speed streaks are directly related to the hairpin or horseshoe-like vortices. This observation can give a better understanding of the physical mechanism in the turbulent boundary layer. Fluid Mechanic Institute, BUAA  相似文献   

14.
An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0∼4.7)×107/m. Detailed heat transfer and pressure distributions were measured at fin deflection angles of up to 30° for a sweepback angle of 67.6°. Surface oil flow patterns and liquid crystal thermograms as well as schlieren pictures of fin shock shape were taken. The study shows that the flow was separated at deflection of 10° and secondary separation were detected at deflection of ϑ≥20°. The heat transfer and pressure distributions on flat plate showed an extensive plateau region followed by a distinct dip and local peak close to the fin foot. Measurements of the plateau pressure and heat transfer were in good agreement with existing prediction methods, but pressure and heating peak measurements atM≥6 were significantly lower than predicted by the simple prediction techniques at lower Mach numbers. The project supported by China Academy of Launch Vehicle Technology  相似文献   

15.
Firstly, the steady laminar flow field of a hypersonic sharp cone boundary layer with zero angle of attack was computed.Then,two groups of finite amplitude T-S wave disturbances were introduced at the entrance of the computational field,and the spatial mode transition process was studied by direct numerical simulation (DNS) method. The mechanism of the transition process was analyzed.It was found that the change of the stability characteristics of the mean flow profile was the key issue.Furthermore,the characteristics of evolution for the disturbances of different modes in the hypersonic sharp cone boundary layer were discussed.  相似文献   

16.
17.
In the present work, experimental tests are conducted to study boundary layer transition over a supercritical airfoil undergoing pitch oscillations using hot-film sensors. Tests have been undertaken at an incompressible flow. Three reduced frequencies of oscillations and two mean angles of attack are studied and the influences of those parameters on transition location are discussed. Different algorithms are examined on the hot-film signals to detect the transition point. Results show the formation of a laminar separation bubble near the leading edge and at relatively higher angles of attack which leads to the transition of the boundary layer. However, at lower angles of attack, the amplification of the peaks in voltage signal indicate the emergence of the vortical structures within the boundary layer, introducing a different transition mechanism. Moreover, an increase in reduced frequency leads to a delay in transition onset, postponing it to a higher angle of attack, which widens the hysteresis between the upstroke and downstroke motions. Rising the reduced frequency yields in weakening or omission of vortical disturbances ensuing the removal of spikes in the signals. Of the other important results observed, is faster movement of the relaminarization point in the higher mean angle of attack. Finally, a time–frequency analysis of the hot-film signals is performed to investigate evolution of spectral features of the transition due to the pitching motion. An asymmetry is clearly observed in frequency pattern of the signals far from the bubble zone towards the trailing edge; this may reflect the difference between the transition and relaminarization physics. Also, various ranges of frequency were obtained for different transition mechanisms.  相似文献   

18.
Three turbulent intermittency methods, namely the , TERA (turbulent energy recognition algorithm), and M-TERA (modified turbulent energy recognition algorithm) methods, for identifying the intermittent flow characteristics associated with boundary layer transition from laminar to turbulent were considered and compared. The data used were obtained from hot-wire measurements in transitional boundary layer flows on a concave surface with a 2-m radius of curvature and on a flat plate. Comparisons show that the and TERA methods are more sensitive to the choice of threshold constants than the M-TERA method. In terms of the intermittency distribution across the boundary layer, the values obtained by the and TERA methods are unrealistically high in the near-wall region, while those obtained by the M-TERA method are more realistic. In the outer boundary layer region and outside the boundary layer, the and M-TERA methods give reasonable intermittency values, whereas the TERA method produces unrealistically high values in the region outside the boundary layer. In addition, the M-TERA method provides a sharper definition of theend of transition.  相似文献   

19.
The response of the boundary layer on a flat plate with blunt nose to infinitesimally small non-uniformity in the freestream velocity along the span has been studied. The non-uniformity was shown to excite boundary-layer disturbances similar to streaks or Klebanoff modes generally observed in experiments conducted with a high level of free-stream turbulence. The boundary layer disturbances have a predominantly streamwise velocity component and exhibit transient growth. In contrast to streaks generated by streamwise vortices impinging on the sharp nose of a plate, the disturbances produced by free-stream non-uniformity interaction with a blunt nose have a different level of growth. Their maximal amplification scales with the Reynolds number, based on the size of nose bluntness and is almost independent of the spanwise period of disturbances. This difference was shown to be caused by additional amplification of disturbances via vortex lines stretching around the leading edge.  相似文献   

20.
IntroductionThecylindricalparticletwo_phaseflowsareofparticularinterestintheprocessingofcompositematerials ,textileindustry ,papermaking ,chemicalengineering ,foodprocessing[1].Thecylindricalparticlesinaflowcanmakethereinforcementofmaterials,thechangeofphysicalpropertyformaterialsandthereductionofdrag .Arranaga[2 ]reportedthatdragreductioneffectsareupto 60 %inpipeflowsbyaddingcylindricalparticlestoflow .Thecylindricalparticleshavealsoeffectsonthemechanismsofflowstability .Theeffectofcylindric…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号