首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The effect of Ce-promotion on 50 wt% Ni-based catalysts during the prereforming of n-tetradecane and its optimum content were investigated. The Ni catalyst was synthesized by deposition–precipitation method. Next, various amounts of Ce (0–13 wt%) were loaded on the Ni catalyst by impregnation. The characteristics of the prepared catalysts were analyzed by XRD, H2-TPR, BET, BJH, and H2-chemisorption analyses. The prepared catalysts were tested under the prereforming conditions (temperature = 400 °C, GHSV = 3000 h?1, and S/C = 3 and 4). The Ni catalyst was easily deactivated under the following conditions: temperature = 400 °C, GHSV = 3000 h?1, and S/C = 4. The stability of all Ce-promoted Ni catalysts was improved as compared to that of the Ni catalyst. Among the Ce-promoted catalysts, 5 wt% Ce/50 wt% Ni/MgO–Al2O3 catalyst showed excellent stability even under the severe condition of S/C = 3. SEM, TEM, and TG analyses were performed in order to identify the main factor responsible for the rapid deactivation of the Ni catalyst. In the case of 0Ce/50Ni, Ni particles were encapsulated by many folds of coke and it was related to the rapid catalyst deactivation. However, after Ce promoted on the Ni catalyst, the thickness of the coke layers and the number of encapsulated Ni particles decreased and the deposited amount of coke on the catalyst also decreased.  相似文献   

2.
The deactivation and regeneration of B2O3/TiO2-ZrO2 catalyst for the vapor phase Beckmann rearrangement of cyclohexanone oxime to -caprolactam were studied. The fresh, deactivated and regenerated catalysts were characterized by using adsorption of nitrogen, X-ray diffraction (XRD), thermogravimetry (TG) and NH3-temperature-programmed desorption (NH3-TPD) techniques. The crystal structure and pore size distribution of the catalyst were retained after reaction, but the number of acid sites decreased significantly. There was a relationship between the amount of coke deposited on the catalyst and the decline in catalytic activity. These results suggest that the coke deposition on the surface of catalyst is mainly responsible for the catalyst deactivation. The catalytic activity can be recovered completely after calcining the deactivated catalyst in air flow at 600 °C for 8 h.  相似文献   

3.
This work reports on the characterization of LaRhO3 perovskite as a catalyst for dry reforming of methane. The catalyst was studied using CH4-temperature programmed reduction (TPR), H2-TPR, and temperature programmed surface reaction (TPSR), and the changes in the crystal structure of the catalyst due to these treatments were studied by X-ray diffraction (XRD). XRD pattern of the freshly calcined perovskites showed the formation of highly crystalline LaRhO3 and La2O3 phases. H2-TPR of the fresh calcined catalyst showed a shoulder at 342°C and a broad peak at 448°C, suggesting that the reduction of Rh in perovskite occurs in multiple steps. XRD pattern of the reduced catalyst suggests complete reduction of the LaRhO3 phase and the formation of metallic Rh and minor amounts of La(OH)3. The CH4-TPR data show qualitatively similar results as H2-TPR, with a shoulder and a broad peak in the same temperature range. Following the H2-TPR up to 950°C, the same batch of catalyst was oxidized by flowing 5 vol. % O2/He up to 500°C and a second H2-TPR (also up to 950°C) was conducted. This second H2-TPR differed significantly from that of the fresh calcined catalyst. The single sharp peak at 163°C in the second H2-TPR suggests a significant change in the catalyst, probably causedby the transformation of about 90 % of the perovskite into Rh/La2O3. This was confirmed by the XRD studies of the catalyst reduced after the oxidation at 500°C. TPSR of the dry reforming reaction on the fresh calcined catalyst showed CO and H2 formation starting at 400°C, with complete consumption of the reactants at 650°C. The uneven consumption of reactants between 400°C and 650°C suggests that reactions other than DRM occur, including reverse water gas shift (RWGS) and the Boudouard reaction (BR), probably as a result of in-situ changes in the catalyst, consistent with the H2-TPR results. TPSR, after a H2-TPR up to 950°C, showed that the dry reforming reaction did not light off until 570°C, which is much higher temperature than the one observed using fresh calcined catalyst. This shows that the uniform sites produced during the 950°C H2-TPR are catalytically less active than those of the fresh calcined catalyst, and that no significant side reactions such as RWGS or the Boudouard reaction occur. This suggests that reduction leads to the formation of a single type of sites which do not catalyze simultaneous side reactions.  相似文献   

4.
The oligomerization of endo-dicyclopentadiene (endo-DCPD) over a mesoporous catalyst in a continuous-flow reactor at elevated pressure was studied to produce tricyclopentadiene (TCPD) and tetracyclopentadiene (TeCPD). The mesoporous material prepared from zeolite beta (MMZ) was utilized as a catalyst. In addition, this study focused on the catalytic performance of the regenerated catalyst in comparison with the fresh catalyst. The TCPD and TeCPD were continuously produced through DCPD oligomerization over the MMZ catalyst in a fixed bed reactor. At early time-on-stream, the conversion of endo-DCPD, the yield of TCPD and TeCPD, and the isomerization selectivity of TCPD in the fixed bed reactor were comparable to those in the batch-type reactor. The yield of oligomer containing TCPD and TeCPD decreased drastically from 28.5 % at 3 h time-on-stream to 21.5 % at 12 h time-on-stream, indicating that the catalyst was significantly deactivated. The in situ calcination in air flow at 500 °C was found to be effective for the regeneration of the used MMZ catalyst.  相似文献   

5.
Song  Qi  Ran  Rui  Li  Dongyang  Zhao  Baohuai  Weng  Duan 《Catalysis Surveys from Asia》2021,25(3):312-323

Mesoporous silica was used in conjunction with the ammonia evaporation method to prepare highly dispersed Ni catalysts for the dry reforming of methane (DRM). The effect of Ni dispersion on the catalytic performance was investigated by applying different Ni loadings. The pore structure, morphology, Ni dispersion, catalytic activity for DRM as well as the coke resistance were investigated. During the reaction at a relatively low temperature of 600 °C, all the three catalysts exhibited high stability in CH4 and CO2 conversion and excellent coke resistance, in comparison to Ni/SiO2 catalyst prepared by the incipient wetness method. Among them, 10% Ni–SiO2 exhibited the best catalytic performance with the maximum steady conversions of 62% and 69% for CH4 and CO2 at 600 °C, which was beneficial from its optimal Ni content and the presence of highly-dispersed metal nanoparticles confined in the mesopores.

  相似文献   

6.
Carbon dioxide reforming of ethanol over Rh/CeO2 catalyst was deeply investigated at different reaction temperatures of 450–700 °C and reactant ratios (CO2/ethanol from 1 to 3) under atmospheric pressure. The obtained results indicated that Rh/CeO2 catalyst presented a promising activity and stability for syngas production from renewable bio-ethanol instead of conventional methane. Typically, CO2-rich conditions (CO2/ethanol = 3) were favorable for reaction process and dynamic coke cleaning, which led to remarkably stable performance over 65 h on stream. The strong redox capacity of CeO2 support might also accelerate CO2 activation and prevent the carbon accumulation over the catalyst surface. Additionally, tunable H2/CO ratios were available by changing the CO2/ethanol ratios. The results from characterization of samples before and after catalytic tests allowed to establish the relationship between textural properties and catalytic performance.  相似文献   

7.
At temperatures up to 1100°C, CH4 and CO2 react over a Pt wire to give mainly the reforming product CO, even at a CH4/CO2 ratio of 4.3. But if coke is present on the wire, the dominant reaction becomes the pyrolysis of CH4 to form mainly C2H2 and C6H6. Thus, surface carbon poisons the reforming reaction and is autocatalytic for CH4 pyrolysis. Higher temperatures and larger CH4/O2 ratios favor the formation of coke and the pyrolysis reaction. Molecular oxygen and, to a lesser extent, water have the opposite effect.  相似文献   

8.
A study has been carried out using HZSM-5, HY and Hβ zeolite-based catalysts in the pyrolysis of high density polyethylene (HDPE) continuously fed into a conical spouted bed reactor (CSBR) at 500 °C and atmospheric pressure, with the aim being to assess the yields and composition of the main products (both light olefins and automotive fuel hydrocarbons). Product streams have been grouped into seven lumps: light olefins (C2–C4) and light alkanes (<C4) in the gas fraction, the liquid fraction consisting of three lumps (non-aromatic C5–C11 compounds, single-ring aromatics and C11+ hydrocarbons), wax and coke. The results are compared with those already obtained in thermal pyrolysis in a CSBR and with those obtained in the literature using catalysts in bubbling fluidized beds. HZSM-5 zeolite-based catalyst is very selective to light olefins, ≈58 wt% once equilibrated; whereas high yields of non-aromatic C5–C11 products (around 45 wt%) are obtained with Hβ and HY zeolite-based catalysts. Wax yield increases as reactions proceed, especially with HY and Hβ zeolite-based catalysts, due to catalyst deactivation by coke formation. Product distribution with the different catalysts and their evolution throughout continuous operation by feeding HDPE is explained according to the different properties of the zeolites used.  相似文献   

9.
Removal of carbonyl sulfide (COS) from CO2 stream is significant for the production and utilization of food grade CO2. This study investigates the adsorption performance of Ag/NaZSM-5 as adsorbent prepared by incipient wetness impregnation for the removal of COS from a CO2 stream in a fixed-bed adsorption apparatus. Effects of various conditions on the preparation of adsorbent, adsorption and desorption were intensively examined. The results revealed that COS can be removed to below 1×10?9 from a CO2 stream (1000 ppm COS/CO2) using Ag/NaZSM-5 (10 wt% AgNO3) with an adsorption capacity of 12.86 mg-g?1. The adsorbent can be fully regenerated using hot air at 450 °C. The adsorption ability remained stable even after eight cycles of regeneration.  相似文献   

10.
A Cu-Ce0.8Zr0.2O2 (Cu-CeZr) catalyst was synthesized by a facile ball-milling technique and its performance towards to CO2 reforming of ethanol was deeply studied. Noticeably, syngas production from ethanol dry reforming is regarded as one of the efficient routes to minify the undesirable CO2 discharge. Various characterization and detailed experimental tests were conducted to probe the influence of catalyst preparation method. Hence, the as-prepared Cu-CeZr sample presented a better activity compared with Cu/CeZr prepared by precipitation method. Full ethanol conversion was achieved at as low as 550?°C under the conditions where only 49?mol% H2, 41?mol% CO and 10?mol% CH4 were formed as main products. Additionally, Cu-CeZr catalyst exhibited satisfactory stability even under severe stoichiometric feed composition (ethanol/CO2?=?1) during 90?h on-stream aging tests. Herein, the remarkably superior catalytic performance of Cu-CeZr was interpreted in terms of the improved Cu dispersion and the intimated metal-support interaction. This might shed light on syngas production from an sustainable process instead of conventional methane dry reforming.  相似文献   

11.
The effect of Rh dispersion on reforming of CH4 with CO2 over H‐Beta supported Rh catalysts has been investigated. The CH4 and CO2 conversion over the catalysts increase with increasing Rh loading from 0.5 wt% to 4.0 wt% in the reaction temperature range of 823–1123 K. The high TOF of CH4 over 0.5 wt% and 1.0 wt% Rh/H‐beta may be attributed to high dispersion of rhodium species. The catalysts before and after the reaction were characterized by XRD, TEM, and TG‐DTA and the results indicate the catalysts with Rh loading of 0.5 wt% and 1.0 wt% exhibiting high resistance to coke. Under controllable conditions, we confirm that the coke is originated from methane dissociation and can be substantially oxidized by active oxygen species dissociated from the adsorbed carbon dioxide on the catalyst with high dispersion of Rh species.  相似文献   

12.
In the present paper, the catalytic dehydrogenation of C2H6 to C2H4 under non-oxidative conditions was investigated in a fixed-bed micro-reactor under ambient pressure at 823 - 923 K. The 6Cr/g-Al2O3 catalyst was found to be the best catalyst among the g-Al2O3, SiO2, MCM41, MgO and Si-2 supported chromium oxide catalysts. The features of the 6Cr/g-Al2O3 catalyst for the reaction could be listed as follows: (1) At 823 - 923 K, the C2H4 selectivity of 92.5-78.6% at a C2H6 conversion of 9.5-29.8% could be obtained. (2) The catalyst had the good regeneration performance, i.e., could be regenerated by air repeatedly. (3) The main products were C2H4, CH4, H2 and coke. No carbon oxides were identified.  相似文献   

13.
The effect of calcination temperatures on dry reforming catalysts supported on high surface area alumina Ni/γ-Al2O3 (SA-6175) was studied experimentally. In this study, the prepared catalyst was tested in a micro tubular reactor using temperature ranges of 500, 600, 700 and 800 °C at atmospheric pressure, using a total flow rate of 33 ml/min consisting of 3 ml/min of N2, 15 ml/min of CO2 and 15 ml/min of CH4. The calcination was carried out in the range of 500–900 °C. The catalyst is activated inside the reactor at 500–800 °C using hydrogen gas. It was observed that calcination enhances catalyst activity which increases as calcination and reaction temperatures were increased. The highest conversion was obtained at 800 °C reaction temperature by using catalyst calcined at 900 °C and activation at 700 °C. The catalyst characterization conducted supported the observed experimental results.  相似文献   

14.
Zr–TiO2 synthesized heterogeneous catalysts could efficiently convert ethyl levulinates (ELs) to γ-valerolactone (GVL) using isopropanol (2-PrOH) as H-donor. Obtained catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), High revolution transmission electron microscope (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma optical emission spectroscopy (ICP-OES), NH3/CO2 temperature programmed desorption (NH3/CO2-TPD), pyridine-infrared spectroscopy, H2 temperature-programmed reduction (H2-TPR), and N2 adsorption and desorption measurements. In total, 10 wt% Zr–TiO2 with average nanoparticle sizes (ca. 4–6 nm) exhibited optimum catalytic activity after optimization of reaction temperature, reaction time, catalyst loading, as well as solvent effect. GVL yield reached 74% with 79% EL conversion at 190 °C for 5 h over 10 wt% Zr–TiO2 in 2-PrOH. The high catalytic activity could be attributed to an appropriate proportion of acidic/basic sites, high Brønted/Lewis acid ratio, and large surface areas. Both acidic and basic sites lead to a synergistic effect on the concurrent activation of H-donor and substrate. The major side product ethyl 4-hydroxypentanoate (EHP) and other byproducts were found. GVL yield achieved from methyl levulinate (ML) and levulinic acid (LA) were 65% and 20%, respectively. Catalyst deactivation was observed due to coke deposits on the catalyst’s surface. The spent catalyst proved to be reusable to recover almost completely its initial activity after calcination (300 °C, 2 h). A plausible reaction mechanism is presented on the basis of characterization results.  相似文献   

15.
An experimental study of the regeneration of diesel particulate filter (DPF) was conducted through the use of a self-designed Non-thermal plasma (NTP) injection system with an experimental temperature of 20–300 °C, with atmospheric air being used as the gas source. The results revealed that the PM could be broken down into CO and CO2 by NTP, through a discharge reaction of the NTP reactor. As the temperature increases, the mass of C1 (mass of C in CO) showed an overall declining trend. Interestingly, the mass of C2 (mass of C in CO2) and C12 (the sum of C1 and C2) both showed an initial increase, followed by a decrease. The peak mass of C12 appears at 150 °C, and both axial and radial temperature gradients are less than the limit of DPF temperature gradient at this temperature. In conclusion, DPF can be regenerated by the NTP technology at a lower temperature, which can aid in the avoidance of thermal damage of DPF. The technology boasts a great advantage in adopting atmospheric air as its gas source, which can not only reduce costs, but also is convenient.  相似文献   

16.
The catalytic, deactivation, and regeneration characteristics of large coffin‐shaped H‐ZSM‐5 crystals were investigated during the methanol‐to‐hydrocarbons (MTH) reaction at 350 and 500 °C. Online gas‐phase effluent analysis and examination of retained material thereof were used to explore the bulk properties of large coffin‐shaped zeolite H‐ZSM‐5 crystals in a fixed‐bed reactor to introduce them as model catalysts for the MTH reaction. These findings were related to observations made at the individual particle level by using polarization‐dependent UV‐visible microspectroscopy and mass spectrometric techniques after reaction in an in situ microspectroscopy reaction cell. Excellent agreement between the spectroscopic measurements and the analysis of hydrocarbon deposits by means of retained hydrocarbon analysis and time‐of‐flight secondary‐ion mass spectrometry of spent catalyst materials was observed. The obtained data reveal a shift towards more condensed coke deposits on the outer zeolite surface at higher reaction temperatures. Zeolites in the fixed‐bed reactor setup underwent more coke deposition than those reacted in the in situ microspectroscopy reaction cell. Regeneration studies of the large zeolite crystals were performed by oxidation in O2/inert gas mixtures at 550 °C. UV‐visible microspectroscopic measurements using the oligomerization of styrene derivatives as probe reaction indicated that the fraction of strong acid sites decreased during regeneration. This change was accompanied by a slight decrease in the initial conversion obtained after regeneration. H‐ZSM‐5 deactivated more rapidly at higher reaction temperature.  相似文献   

17.
The MoZSM-5 (4.0 wt % Mo) catalyst has been characterized by high-resolution transmission electron microscopy, EDXA, and EPR. Two types of molybdenum-containing particles are stabilized in the catalyst in the course of nonoxidative methane conversion at 750°C. These are 2-to 10-nm molybdenum carbide particles on the zeolite surface and clusters smaller than 1 nm in zeolite channels. According to EPR data, these clusters contain the oxidized molybdenum form Mo5+. The surface Mo2C particles are deactivated at the early stages of the reaction because of graphite condensation on their surface. Methane is mainly activated on oxidized molybdenum clusters located in the open molecular pores of the zeolite. The catalyst is deactivated after the 420-min-long operation because of coke buildup on the zeolite surface and in the zeolite pores.  相似文献   

18.
Non‐oxidative methane dehydroaromatization is a promising reaction to directly convert natural gas into aromatic hydrocarbons and hydrogen. Commercialization of this technology is hampered by rapid catalyst deactivation because of coking. A novel approach is presented involving selective oxidation of coke during methane dehydroaromatization at 700 °C. Periodic pulsing of oxygen into the methane feed results in substantially higher cumulative product yield with synthesis gas; a H2/CO ratio close to two is the main side‐product of coke combustion. Using 13C isotope labeling of methane it is demonstrated that oxygen predominantly reacts with molybdenum carbide species. The resulting molybdenum oxides catalyze coke oxidation. Less than one‐fifth of the available oxygen reacts with gaseous methane. Combined with periodic regeneration at 550 °C, this strategy is a significant step forward, towards a process for converting methane into liquid hydrocarbons.  相似文献   

19.
采用浸渍法制备了Ni/HZSM-5双功能催化剂,采用BET、XRD、NH3-TPD、H2-TPR、FTIR和TG等方法表征了催化剂比表面、孔结构、酸性、还原能力及骨架结构等信息,研究了其催化木糖醇水相加氢合成液体烷烃的性能及催化剂失活的原因。结果表明,在优化的金属中心/酸中心的协同作用下,木糖醇可通过水相加氢高选择性地合成C5-C6烷烃;过高的金属中心或酸中心均会导致C-C键断裂形成轻质烷烃,以2%Ni/HZSM-5催化剂上木糖醇水相加氢活性最高,木糖醇C转化率为94%液体烷烃总收率可达90%,这与其具有较大的比表面积、合适的孔径分布、较多的金属活性中心、适中的酸量和强酸量有关。催化剂6次重复使用后活性明显降低,其骨架部分脱铝和表面积碳是其失活的主要原因。  相似文献   

20.
The performance of a new lab-made bifunctional material Ni/Al2O3/KNaTiO3 for producing high purity H2 via sorption-enhanced steam methane reforming (SESMR) was investigated. A series of bifunctional materials with 10 wt% Ni loading but different wt% ratios of KNaTiO3 and Al2O3 was prepared by wetness impregnation method. All the materials were calcined at 700 °C for 3 hours and screened for their catalytic activity in a continuous flow fixed-bed reactor. The material containing 50 wt% each of KNaTiO3 and Al2O3 (designated as HM) was found to be the best choice. The optimum process parameters for the production of high purity H2 were determined: temperature = 700 °C, steam to carbon (S/C) molar ratio = 6 and gas-hourly space velocity (GHSV) = 2000 cm3 g-1 h-1. The values of CH4 conversion, H2 yield and H2 purity were 87, 87 and 90%, respectively, at the optimum reaction conditions. The adsorption capacity of HM was found to be 14.7 wt%. With a breakthrough time of 10 min, the material was stable for 8 adsorption-desorption cycles. The regeneration of HM was achieved with N2 gas at the same reaction temperature. Overall, the activity of this material for SESMR was very promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号