首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微型飞行器低雷诺数空气动力学   总被引:7,自引:0,他引:7  
李锋  白鹏  石文  李建华 《力学进展》2007,37(2):257-268
微型飞行器(MAVs)设计绝不是常规飞行器在尺度上的简单缩小,面临许多技术难题.其中微型飞行器低雷诺数空气动力学是其最为根本的技术瓶颈之一,也是当前受到广泛关注的热点之一.本文紧密结合微型飞行器技术,对这一领域中所面临的低雷诺数空气动力学问题和近两年来该方向国内一些新的进展进行了较为详细的介绍.按照MAVs飞行方式和结构特性进行分类,简单介绍微型飞行器研究中的低$Re$数空气动力学问题.首先介绍了二维和三维固定翼低雷诺数空气动力学问题:包括层流分离泡,翼型升力系数小攻角非线性效应,静态迟滞效应,以及低$Re$数小展弦比机翼气动特性.第2,介绍了拍动翼低雷诺数空气动力学方面的研究工作.包括前人提出的昆虫低$Re$数下获得高升力的多种非定常拍动翼飞行机制:Wagner效应、Weis-Fogh效应(clap-and-fling)、延迟失速效应(delayedstall)、Kramer效应(rotational forces)、尾迹捕获效应(wakecapture)、附加质量效应(addedmass)等.以及国内学者近几年在拍动翼方面取得的一些研究成果.第3,介绍了柔性翼低雷诺数气动问题.研究表明柔性翼对于固定翼微型飞行器提高抗阵风能力,拍动翼微型飞行器产生足够的升力和推力.最后简单介绍了可变形翼(morphingwing)微型飞行器方面的一些研究工作,指出微型飞行器技术可以通过采用可变形翼设计,突破众多的技术瓶颈.另一方面,可变形翼概念可以通过在低成本,低速的MAVs上进行飞行试验,获得非常好的验证平台.   相似文献   

2.
Wing shape and kinematics of flapping wing nano air vehicles are two important factors in their design process. These factors require an optimal design in terms of decreasing the needed aerodynamic power. Since, insects are regarded as the best natural flier in hovering flight, seven of their wings are considered in order to determine the best wing shape for hovering applications. Because of the difference in the original bio-inspired shape of these wings, two scenarios are studied, namely, considering the same wingspan and same wing surface. Using the quasi-steady approximation to model the aerodynamic loads and a basic gradient approach to optimize the kinematics of the wing, the optimum Euler angles, required aerodynamic power, and hence the best wing shape for each scenario are analytically determined. The results show that the wing shape and surface strongly impact the aerodynamic characteristics and performances of the chosen wing shapes. It is demonstrated that the twisted parasite wing shape is a good candidate to minimize the required aerodynamic power during hovering. The strategy used in this analysis can be used to evaluate the performance of any realistic wing shape design and could provide a guideline for selecting the best wing shape and kinematics for flapping wing nano air vehicles with hovering capabilities.  相似文献   

3.
4.
Structural Analysis of a Dragonfly Wing   总被引:2,自引:0,他引:2  
Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned for carrying these loads, is however not fully understood. To study this we made a three-dimensional scan of a dragonfly (Sympetrum vulgatum) fore- and hindwing with a micro-CT scanner. The scans contain the complete venation pattern including thickness variations throughout both wings. We subsequently approximated the forewing architecture with an efficient three-dimensional beam and shell model. We then determined the wing’s natural vibration modes and the wing deformation resulting from analytical estimates of 8 load cases containing aerodynamic and inertial loads (using the finite element solver Abaqus). Based on our computations we find that the inertial loads are 1.5 to 3 times higher than aerodynamic pressure loads. We further find that wing deformation is smaller during the downstroke than during the upstroke, due to structural asymmetry. The natural vibration mode analysis revealed that the structural natural frequency of a dragonfly wing in vacuum is 154 Hz, which is approximately 4.8 times higher than the natural flapping frequency of dragonflies in hovering flight (32.3 Hz). This insight in the structural properties of dragonfly wings could inspire the design of more effective wings for insect-sized flapping micro air vehicles: The passive shape of aeroelastically tailored wings inspired by dragonflies can in principle be designed more precisely compared to sail like wings —which can make the dragonfly-like wings more aerodynamically effective.  相似文献   

5.
In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.  相似文献   

6.
Large active wing deformation is a significant way to generate high aerodynamic forces required in bat's flapping flight. Besides the twisting, elementary morphing models of a bat wing are proposed, including wing-bending in the spanwise direction, wing-cambering in the chordwise direction, and wing area-changing. A plate of aspect ratio 3 is used to model a bat wing, and a three-dimensional unsteady panel method is used to predict the aerodynamic forces. It is found that the cambering model has great positive influence on the lift, followed by the area-changing model and then the bending model. Further study indicates that the vortex control is a main mechanism to produce high aerodynamic forces. The mechanisms of aerodynamic force enhancement are asymmetry of the cambered wing and amplification effects of wing area-changing and wing bending. Lift and thrust are generated mainly during downstroke, and they are almost negligible during upstroke by the integrated morphing model-wing.  相似文献   

7.
Near wake vortex dynamics of a hovering hawkmoth   总被引:1,自引:0,他引:1  
Numerical investigation of vortex dynamics in near wake of a hovering hawkmoth and hovering aerodynamics is conducted to support the development of a biology-inspired dynamic flight simulator for flapping wingbased micro air vehicles. Realistic wing-body morphologies and kinematics are adopted in the numerical simulations. The computed results show 3D mechanisms of vortical flow structures in hawkmoth-like hovering. A horseshoe-shaped primary vortex is observed to wrap around each wing during the early down- and upstroke; the horseshoe-shaped vortex subsequently grows into a doughnut-shaped vortex ring with an intense jet-flow present in its core, forming a downwash. The doughnut-shaped vortex rings of the wing pair eventu- ally break up into two circular vortex rings as they propagate downstream in the wake. The aerodynamic yawing and rolling torques are canceled out due to the symmetric wing kinematics even though the aerodynamic pitching torque shows significant variation with time. On the other hand, the time- varying the aerodynamics pitching torque could make the body a longitudinal oscillation over one flapping cycle.  相似文献   

8.
Ornithopters or mechanical birds produce aerodynamic lift and thrust through the flapping motion of their wings. Here, we use an experimental apparatus to investigate the effects of a wing's twisting stiffness on the generated thrust force and the power required at different flapping frequencies. A flapping wing system and an experimental set-up were designed to measure the unsteady aerodynamic and inertial forces, power usage and angular speed of the flapping wing motion. A data acquisition system was set-up to record important data with the appropriate sampling frequency. The aerodynamic performance of the vehicle under hovering (i.e., no wind) conditions was investigated. The lift and thrust that were produced were measured for different flapping frequencies and for various wings with different chordwise flexibilities. The results show the manner in which the elastic deformation and inertial flapping forces affect the dynamical behavior of the wing. It is shown that the generalization of the actuator disk theory is, at most, only valid for rigid wings, and for flexible wings, the power P varies by a power of about 1.0  of the thrust T. This aerodynamic information can also be used as benchmark data for unsteady flow solvers.  相似文献   

9.
The aerodynamic performance of a flexible membrane flapping wing has been investigated here. For this purpose, a flapping-wing system and an experimental set-up were designed to measure the unsteady aerodynamic forces of the flapping wing motion. A one-component force balance was set up to record the temporal variations of aerodynamic forces. The flapping wing was studied in a large low-speed wind tunnel. The lift and thrust of this mechanism were measured for different flapping frequencies, angles of attack and for various wind tunnel velocities. Results indicate that the thrust increases with the flapping frequency. An increase in the wind tunnel speed and flow angle of attack leads to reduction in the thrust value and increases the lift component. The aerodynamic and performance parameters were nondimensionalized. Appropriate models were introduced which show its aerodynamic performance and may be used in the design process and also optimization of the flapping wing.  相似文献   

10.
This paper numerically studies the aerodynamic performance of a bird-like bionic flapping wing. The geometry and kinematics are designed based on a seagull wing,in which flapping, folding, swaying, and twisting are considered. An in-house unsteady flow solver based on hybrid moving grids is adopted for unsteady flow simulations. We focus on two main issues in this study, i.e., the influence of the proportion of down-stroke and the effect of span-wise twisting. Numerical results show that the proportion of downstroke is closely related to the efficiency of the flapping process. The preferable proportion is about 0.7 by using the present geometry and kinematic model, which is very close to the observed data. Another finding is that the drag and the power consumption can be greatly reduced by the proper span-wise twisting. Two cases with different reduced frequencies are simulated and compared with each other. The numerical results show that the power consumption reduces by more than 20%, and the drag coefficient reduces by more than 60% through a proper twisting motion for both cases. The flow mechanism is mainly due to controlling of unsteady flow separation by adjusting the local effective angle of attack. These conclusions will be helpful for the high-performance micro air vehicle(MAV) design.  相似文献   

11.
12.
Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment. They generate and control aerodynamic forces by flapping their flexible wings. While the dynamic shape changes of their flapping wings are known to enhance the efficiency of their flight, they can also affect the stability of a flapping wing flyer under unpredictable disturbances by responding to the sudden changes of aerodynamic forces on the wing. In order to test the hypothesis, the gust response of flexible flapping wings is investigated numerically with a specific focus on the passive maintenance of aerodynamic forces by the wing flexibility. The computational model is based on a dynamic flight simulator that can incorporate the realistic morphology, the kinematics, the structural dynamics, the aerodynamics and the fluid–structure interactions of a hovering hawkmoth. The longitudinal gusts are imposed against the tethered model of a hovering hawkmoth with flexible flapping wings. It is found that the aerodynamic forces on the flapping wings are affected by the gust, because of the increase or decrease in relative wingtip velocity or kinematic angle of attack. The passive shape change of flexible wings can, however, reduce the changes in the magnitude and direction of aerodynamic forces by the gusts from various directions, except for the downward gust. Such adaptive response of the flexible structure to stabilise the attitude can be classified into the mechanical feedback, which works passively with minimal delay, and is of great importance to the design of bio-inspired flapping wings for micro-air vehicles.  相似文献   

13.
14.
In this paper, the decade of numerical and experimental investigations leading to the development of the authors’ unique flapping-wing micro air vehicle is summarized. Early investigations included the study of boundary layer energization by means of a small flapping foil embedded in a flat-plate boundary layer, the reduction of the recirculatory flow region behind a backward-facing step by means of a small flapping foil, and the reduction or suppression of flow separation behind blunt or cusped airfoil trailing edges by flapping a small foil located in the wake flow region. These studies were followed by systematic investigations of the aerodynamic characteristics of single flapping airfoils and airfoil combinations. These unsteady flows were described using flow visualization, laser-Doppler velocimetry in addition to panel and Navier–Stokes computations. It is then shown how this flapping-wing database was used to conceive, design and develop a micro air vehicle which has a fixed wing for lift and two flapping wings for thrust generation. While animal flight is characterized by a coupled force generation, the present design appears to separate lift and thrust. However, in fact, the performance of one surface is closely coupled to the other surfaces.  相似文献   

15.
Insect wings are subjected to fluid, inertia and gravitational forces during flapping flight. Owing to their limited rigidity, they bent under the influence of these forces. Numerical study by Hamamoto et al. (Adv Robot 21(1–2):1–21, 2007) showed that a flexible wing is able to generate almost as much lift as a rigid wing during flapping. In this paper, we take a closer look at the relationship between wing flexibility (or stiffness) and aerodynamic force generation in flapping hovering flight. The experimental study was conducted in two stages. The first stage consisted of detailed force measurement and flow visualization of a rigid hawkmoth-like wing undergoing hovering hawkmoth flapping motion and simple harmonic flapping motion, with the aim of establishing a benchmark database for the second stage, which involved hawkmoth-like wing of different flexibility performing the same flapping motions. Hawkmoth motion was conducted at Re = 7,254 and reduced frequency of 0.26, while simple harmonic flapping motion at Re = 7,800 and 11,700, and reduced frequency of 0.25. Results show that aerodynamic force generation on the rigid wing is governed primarily by the combined effect of wing acceleration and leading edge vortex generated on the upper surface of the wing, while the remnants of the wake vortices generated from the previous stroke play only a minor role. Our results from the flexible wing study, while generally supportive of the finding by Hamamoto et al. (Adv Robot 21(1–2):1–21, 2007), also reveal the existence of a critical stiffness constant, below which lift coefficient deteriorates significantly. This finding suggests that although using flexible wing in micro air vehicle application may be beneficial in term of lightweight, too much flexibility can lead to deterioration in flapping performance in terms of aerodynamic force generation. The results further show that wings with stiffness constant above the critical value can deliver mean lift coefficient almost the same as a rigid wing when executing hawkmoth motion, but lower than the rigid wing when performing a simple harmonic motion. In all cases studied (7,800 ≤ Re ≤ 11,700), the Reynolds number does not alter the force generation significantly.  相似文献   

16.
Low Reynolds number aerodynamic experiments with flapping animals (such as bats and small birds) are of particular interest due to their application to micro air vehicles which operate in a similar parameter space. Previous PIV wake measurements described the structures left by bats and birds and provided insight into the time history of their aerodynamic force generation; however, these studies have faced difficulty drawing quantitative conclusions based on said measurements. The highly three-dimensional and unsteady nature of the flows associated with flapping flight are major challenges for accurate measurements. The challenge of animal flight measurements is finding small flow features in a large field of view at high speed with limited laser energy and camera resolution. Cross-stream measurement is further complicated by the predominately out-of-plane flow that requires thick laser sheets and short inter-frame times, which increase noise and measurement uncertainty. Choosing appropriate experimental parameters requires compromise between the spatial and temporal resolution and the dynamic range of the measurement. To explore these challenges, we do a case study on the wake of a fixed wing. The fixed model simplifies the experiment and allows direct measurements of the aerodynamic forces via load cell. We present a detailed analysis of the wake measurements, discuss the criteria for making accurate measurements, and present a solution for making quantitative aerodynamic load measurements behind free-flyers.  相似文献   

17.
Flapping wings are promising lift and thrust generators, especially for very low Reynolds numbers. To investigate aeroelastic effects of flexible wings (specifically, wing’s twisting stiffness) on hovering and cruising aerodynamic performance, a flapping-wing system and an experimental setup were designed and built. This system measures the unsteady aerodynamic and inertial forces, power usage, and angular speed of the flapping wing motion for different flapping frequencies and for various wings with different chordwise flexibility. Aerodynamic performance of the vehicle for both no wind (hovering) and cruise condition was investigated. Results show how elastic deformations caused by interaction of inertial and aerodynamic forces with the flexible structure may affect specific power consumption. This information was used here to find a more suitable structural design. The best selected design in our tests performs up to 30% better than others (i.e., less energy consumption for the same lift or thrust generation). This measured aerodynamic information could also be used as a benchmarking data for unsteady flow solvers.  相似文献   

18.
This study investigates the unsteady aerodynamic characteristics of the cambered wings of a flapping-wing micro air vehicle (FW-MAV) in hover. A three-dimensional fluid–structure interaction solver is developed for a realistic modeling of large-deforming wing structure and geometry. Cross-validation is conducted against the experimental results obtained also in the present study to establish more accurate analyses of cambered wings. An investigation is carried out on the unsteady vortex structures around the wings caused by the passive twisting motion. A parametric study is then conducted to evaluate the aerodynamic performance with respect to the camber angle at three different flapping frequencies including normal operating conditions. The camber angles producing the largest thrust and highest propulsive efficiency are estimated at each flapping frequency, and their effects on aerodynamic performance are analyzed in terms of the stroke phase. The timing and magnitude of the passive twisting motion, which are dependent on the camber angle at the operating frequency, greatly affects the unsteady vortex structure. Consequently, the camber angle designed at the operating frequency plays a key role in enhancing the aerodynamic performance of FW-MAVs.  相似文献   

19.
Terze  Zdravko  Pandža  Viktor  Andrić  Marijan  Zlatar  Dario 《Nonlinear dynamics》2022,109(2):975-987

Insect flight research is propelled by their unmatched flight capabilities. However, complex underlying aerodynamic phenomena make computational modeling of insect-type flapping flight a challenging task, limiting our ability in understanding insect flight and producing aerial vehicles exploiting same aerodynamic phenomena. To this end, novel mid-fidelity approach to modeling insect-type flapping vehicles is proposed. The approach is computationally efficient enough to be used within optimal design and optimal control loops, while not requiring experimental data for fitting model parameters, as opposed to widely used quasi-steady aerodynamic models. The proposed algorithm is based on Helmholtz–Hodge decomposition of fluid velocity into curl-free and divergence-free parts. Curl-free flow is used to accurately model added inertia effects (in almost exact manner), while expressing system dynamics by using wing variables only, after employing symplectic reduction of the coupled wing-fluid system at zero level of vorticity (thus reducing out fluid variables in the process). To this end, all terms in the coupled body-fluid system equations of motion are taken into account, including often neglected terms related to the changing nature of the added inertia matrix (opposed to the constant nature of rigid body mass and inertia matrix). On the other hand—in order to model flapping wing system vorticity effects—divergence-free part of the flow is modeled by a wake of point vortices shed from both leading (characteristic for insect flight) and trailing wing edges. The approach is evaluated for a numerical case involving fruit fly hovering, while quasi-steady aerodynamic model is used as benchmark tool with experimentally validated parameters for the selected test case. The results indicate that the proposed approach is capable of mid-fidelity accurate calculation of aerodynamic loads on the insect-type flapping wings.

  相似文献   

20.
One of the important steps in the sizing process of fixed and flapping wing micro air vehicles (MAVs) is weight estimation of the electrical and structural components. In order to enhance the flight performance and endurance of MAVs, it is required to carefully estimate their weight with a minimum error. In this study, methodologies to estimate the weight of fixed and flapping wing MAVs are proposed. After dividing the total weight of the MAV into weights of structural and electrical components, these two weights are separately identified. The weight of the MAV electrical components is estimated by using engineering design techniques and the weight of the structure is identified by using statistical and computational methods. The proposed methodology for structural weight estimation is based on calculating the percentage of the used material in the construction of different parts of MAVs and then presenting the weight of each part in terms of the wing surface. The proposed computational method gives the exact estimation for the weight of each structure component, such as wing, tail, fuselage, and etc. Based on the offered method for weight estimation of MAVs, the weight estimation of a fixed wing MAV with inverse Zimmerman planform and a flapping wing MAV named “Thunder I” are experimentally shown. This developed methodology gives guidelines for weight estimation and determination of the structural weight percentages in order to design and fabricate efficient fixed and flapping wing MAVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号