首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We reported on the ablation depth control with a resolution of 40 nm on indium tin oxide (ITO) thin film using a square beam shaped femtosecond (190 fs) laser (λp=1030 nm). A slit is used to make the square, flat top beam shaped from the Gaussian spatial profile of the femtosecond laser. An ablation depth of 40 nm was obtained using the single pulse irradiation at a peak intensity of 2.8 TW/cm2. The morphologies of the ablated area were characterized using an optical microscope, atomic force microscope (AFM), and energy dispersive X-ray spectroscopy (EDS). Ablations with square and rectangular types with various sizes were demonstrated on ITO thin film using slits with varying xy axes. The stereo structure of the ablation with the depth resolution of approximately 40 nm was also fabricated successfully using the irradiation of single pulses with different shaped sizes of femtosecond laser.  相似文献   

2.
Femtosecond laser technology, used as a minimally invasive tool in intrastromal refractive surgery, may also have potential as a useful instrument for glaucoma filtration surgery. The purpose of the present study was to evaluate the feasibility of minimally invasive laser sclerostomy by femtosecond laser photodisruption and seek the appropriate patterns of laser ablation and relevant laser parameters. A femtosecond laser (800 nm/50 fs/1 kHz), focused by a 0.1 numerical aperture (NA) objective lens, with different pulse energies and exposure times was applied to ablate hydrated rabbit sclera in vitro. The irradiated samples were examined by scanning electron microscopy (SEM). By moving a three-dimensional, computer-controlled translation stage to which the sample was attached, the femtosecond laser could produce three types of ablation patterns, including linear ablation, cylindrical aperture and rectangular cavity. With pulse energies ranging from 37.5 to 150 μJ, the linear lesions were consistently observed at the inner surface of sclera, whereas it failed to make any photodisruption if pulse energy was below the threshold value of 31.25 μJ, with the corresponding threshold intensity of 4.06×1014 W/cm2. The depths of the linear lesions increased linearly with both pulse energy (37.5–150 μJ) and exposure time (0.1–0.4 s). Histological examination showed the incisions produced by femtosecond laser photodisruption had precise geometry and the edges were sharp and smooth, with no evidence of collateral damage to the surrounding tissue. Our results predict the potential application of femtosecond laser pulses in minimally invasive laser sclerostomy for glaucoma treatment.  相似文献   

3.
We investigate selective patterning of ultra-thin 20 nm Indium Tin Oxide (ITO) thin films on glass substrates, using 343, 515, and 1030 nm femtosecond (fs), and 1030 nm picoseconds (ps) laser pulses. An ablative removal mechanism is observed for all wavelengths at both femtosecond and picoseconds time-scales. The absorbed threshold fluence values were determined to be 12.5 mJ cm2 at 343 nm, 9.68 mJ cm2 at 515 nm, and 7.50 mJ cm2 at 1030 nm for femtosecond and 9.14 mJ cm2 at 1030 nm for picosecond laser exposure. Surface analysis of ablated craters using atomic force microscopy confirms that the selective removal of the film from the glass substrate is dependent on the applied fluence. Film removal is shown to be primarily through ultrafast lattice deformation generated by an electron blast force. The laser absorption and heating process was simulated using a two temperature model (TTM). The predicted surface temperatures confirm that film removal below 1 J cm−2 to be predominately by a non-thermal mechanism.  相似文献   

4.
Polymer electrolyte membranes consisting of a novel hyperbranched polyether PHEMO (poly(3-{2-[2-(2-hydroxyethoxy) ethoxy] ethoxy}methyl-3′-methyloxetane)), PVDF-HFP (poly(vinylidene fluoride-hexafluoropropylene)) and LiTFSI have been prepared by solution casting technique. X-ray diffraction of the PHEMO/PVDF-HFP polymer matrix and pure PVDF-HFP revealed the difference in crystallinity between them. The effect of different amounts of PVDF-HFP and lithium salts on the conductivity of the polymer electrolytes was studied. The ionic conductivity of the prepared polymer electrolytes can reach 1.64 × 10? 4 S·cm? 1 at 30 °C and 1.75 × 10? 3 S·cm? 1 at 80 °C. Thermogravimetric analysis informed that the PHEMO/PVDF-HFP matrix exhibited good thermal stability with a decomposition temperature higher than 400 °C. The electrochemical experiments showed that the electrochemical window of the polymer electrolyte was around 4.2 V vs. Li+/Li. The PHEMO/PVDF-HFP polymer electrolyte, which has good electrochemical stability and thermal stability, could be a promising solid polymer electrolyte for polymer lithium ion batteries.  相似文献   

5.
Ultraviolet photodissociation of the NO dimer is studied with femtosecond time-resolved photoelectron imaging (TR-PEI) spectroscopy. Pump pulses in the range 200–235 nm are employed, while probe pulses are kept at 300 nm. The time dependencies of the observed photoelectron kinetic energies and photoelectron angular distributions support a picture in which valence state optically excited in the dimer evolves on a time scale of <1 ps to the dimer 3s Rydberg state. This dimer Rydberg state then undergoes fragmentation on a time scale of a few ps. In this study we focus on dissociation into an NO ground state fragment and an NO fragment in its 3s Rydberg A2Σ+ state. Every stage of this continuous process, viz. the dimer valence state, the dimer 3s Rydberg state, the separating NO(X) + NO(A) fragments, and the isolated NO(A) fragment is interrogated with TR-PEI.  相似文献   

6.
7.
Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 µm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 µm/s – more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.  相似文献   

8.
We propose a system for measuring spectra of terahertz (THz) pulses, including single pulses, which is based on high-pass filters (HPFs). The system consists of channels for measuring amplitudes of pulses (initial pulses and those transmitted via HPFs with different cutoff frequencies) and an algorithm for processing of the obtained data. The pulse spectrum is restored by using the iteration method or the amplitude–frequency method. The iteration method of spectrum restoration is applicable in the range of THz pulse durations from 10−9 s to 10−7 s. The amplitude–frequency method is applicable to THz pulses with durations exceeding 10−8 s. The system for measuring of THz pulse spectra was simulated by using the characteristics of specially developed waveguide HPFs. The relative simulation error of determining the central frequency by the amplitude–frequency method is equal to 2 · 10−6 for THz pulse durations of 10−5 s and longer.  相似文献   

9.
Nanosized copper aluminate (CuAl2O4) spinel particles have been prepared by a precursor approach with the aid of ultrasound radiation. Mono-phasic copper aluminate with a crystallite diameter of 17 nm along the (3 1 1) plane was formed when the products were synthesized using Cu(NO3)2·6H2O and Al(NO3)3·9H2O as starting materials, with urea as a precipitation agent at a concentration of 9 M. The reaction was carried out under ultrasound irradiation at 80 °C for 4 h and a calcination temperature of 900 °C for 6 h. The synthesized copper aluminate particles and the effect of different processing conditions such as the copper source, precipitation agents, sonochemical reaction time, calcination temperature and time were analyzed and characterized by the techniques of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transformation infrared spectroscopy (FT–IR).  相似文献   

10.
Bacterial cellulose (BC) film formation could be a critical issue in nanotechnology applications such as biomedical or smart materials products. In this research, purified pretreated BC was subjected to high intensity ultrasound (HIUS) and was investigated for the development of BC films. The morphological, structural and thermal properties of the obtained films were studied by using FE-SEM, AFM, FT-IR, XRD, TGA and DSC characterizations. Results showed that the most favorable purification treatment was the 0.01 M NaOH at 70 °C for 2 h under continuous stirring. The most suitable ultrasound operating conditions were found to be, 1 cm distance of ultrasonic probe from the bottom of the beaker, submerged in cold water bath cooling around 12 ± 2 °C. The power (25 W/cm2), time (30 min), BC concentration (0.1% w/w), amplitude (20 μm) and frequency (20 kHz) were maintained constant.  相似文献   

11.
In the present work, we investigate the surface treatment of carbon fiber-reinforced polymer (CFRP) composites by laser ablation with femtosecond laser radiation. For this purpose, unidirectional carbon fiber-reinforced epoxy matrix composites were treated with femtosecond laser pulses of 1024 nm wavelength and 550 fs duration. Laser tracks were inscribed on the material surface using pulse energies and scanning speeds in the range 0.1–0.5 mJ and 0.1–5 mm/s, respectively. The morphology of the laser treated surfaces was investigated by field emission scanning electron microscopy. We show that, by using the appropriate processing parameters, a selective removal of the epoxy resin can be achieved, leaving the carbon fibers exposed. In addition, sub-micron laser induced periodic surface structures (LIPSS) are created on the carbon fibers surface, which may be potentially beneficial for the improvement of the fiber to matrix adhesion in adhesive bonds between CFRP parts.  相似文献   

12.
Nickel (Ni) and cobalt (Co) metal nanowires were fabricated by using an electrochemical deposition method based on an anodic alumina oxide (Al2O3) nanoporous template. The electrolyte consisted of NiSO4 · 6H2O and H3BO3 in distilled water for the fabrication of Ni nanowires, and of CoSO4 · 7H2O with H3BO3 in distilled water for the fabrication of the Co ones. From SEM and TEM images, the diameter and length of both the Ni and Co nanowires were measured to be ∼ 200 nm and 5–10 μm, respectively. We observed the oxidation layers in nanometer scale on the surface of the Ni and Co nanowires through HR–TEM images. The 3 MeV Cl2+ ions were irradiated onto the Ni and Co nanowires with a dose of 1 × 1015 ions/cm2. The surface morphologies of the pristine and the 3 MeV Cl2+ ion-irradiated Ni and Co nanowires were compared by means of SEM, AFM, and HR–TEM experiments. The atomic concentrations of the pristine and the 3 MeV Cl2+ ion-irradiated Ni and Co nanowires were investigated through XPS experiments. From the results of the HR–TEM and XPS experiments, we observed that the oxidation layers on the surface of the Ni and Co nanowires were reduced through 3 MeV Cl2+ ion irradiation.  相似文献   

13.
《Current Applied Physics》2009,9(5):1054-1061
Metal–organic coordination complex single crystals bis thiourea zinc acetate (BTZA) and Cd2+ doped BTZA have been synthesized and grown successfully by slow-cooling technique from their aqueous solutions. Single crystals of pure and Cd2+ doped BTZA with dimensions of 35 × 4 × 2 mm3 and 10 × 5 × 6 mm3, respectively were obtained with well defined morphology. The as grown single crystals are characterized by single crystal XRD studies and melting point measurements which reveal the incorporation of metallic dopants has not changed the structure of the parent crystal. The powder X-ray diffractogram of the grown crystals has been recorded and the various planes of reflection identified shows shift in the peak positions. The metal coordination with thiourea through sulphur in pure and Cd2+ doped BTZA were ascertained by FTIR studies and optical absorption study to identify the UV cut-off range. The presence of metals in pure and Cd2+ doped BTZA crystal lattice were confirmed by atomic absorption spectroscopy (AAS). The thermal decomposition of pure and Cd2+ doped BTZA crystals were investigated by thermo gravimetric analyses (TGA) and differential thermal analysis (DTA) indicate that doped crystals are more stable than pure crystals. The dielectric response of the crystals were studied in the frequency range 100 Hz–5 MHz at different temperatures and the results are discussed. Second harmonic generation (SHG) measurement confirms that the pure and Cd2+ doped BTZA have nonlinear optical (NLO) property. Laser damage threshold value of 12.44 MW/cm2 has been determined using Q-switched Nd:YAG laser operating at 1064 nm and with 8 ns pulses in single shot mode for pure BTZA single crystal is reported for the first time.  相似文献   

14.
Using high-intensity (560–650 GW/cm2) 264 nm 220 femtosecond laser pulses, we inscribed a periodic (comb) transmission filter in a photosensitive Ge/B-codoped fibre, based on a pair of long-period gratings of different strength/wavelength position. The irradiation conditions and grating parameters for the successful realization of the 24–28-nm-wide transmission filter in the region 1480–1580 nm with the fringe period of 1.7–3.1 nm and the fringe bandwidth of 0.8–1.3 nm were established.  相似文献   

15.
Spinal myeloma and metastatic cancer cause similar symptoms and show similar imaging presentations, thus making them difficult to differentiate. In this study, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was performed to differentiate between 9 myelomas and 22 metastatic cancers that present as focal lesions in the spine. The characteristic DCE parameters, including the peak signal enhancement percentage (SE%), the steepest wash-in SE% during the ascending phase and the wash-out SE%, were calculated by normalizing to the precontrast signal intensity. The two-compartmental pharmacokinetic model was used to obtain Ktrans and kep. All nine myelomas showed the wash-out DCE pattern. Of the 22 metastatic cancers, 12 showed wash-out, 7 showed plateau, and 3 showed persistent enhancing patterns. The fraction of cases that showed the wash-out pattern was significantly higher in the myeloma group than the metastatic cancer group (9/9 = 100% vs. 12/22 = 55%, P = .03). Compared to the metastatic cancer group, the myeloma group had a higher peak SE% (226% ± 72% vs. 165% ± 60%, P = .044), a higher steepest wash-in SE% (169% ± 51% vs. 111% ± 41%, P = .01), a higher Ktrans (0.114 ± 0.036 vs. 0.077 ± 0.028 1/min, P = .016) and a higher kep (0.88 ± 0.26 vs. 0.49 ± 0.23 1/min, P = .002). The receiver operating characteristic analysis to differentiate between these two groups showed that the area under the curve was 0.798 for Ktrans, 0.864 for kep and 0.919 for combined Ktrans and kep. These results show that DCE-MRI may provide additional information for making differential diagnosis to aid in choosing the optimal subsequent procedures or treatments for spinal lesions.  相似文献   

16.
The electronic and atomic structures of 4-cyano-4′-iodobiphenyl (CIB) during the growth of a molecular crystal on a GeS(001) substrate were studied by ultraviolet photoemission spectroscopy (UPS), atomic force microscopy (AFM), and extended X-ray absorption fine structure (EXAFS) spectroscopy. AFM images suggest that the CIB molecule grows as a microcrystal at a nominal thickness of 80 Å. The microcrystal grows with the crystal plane parallel to the surface and isotropic crystal axis orientation. EXAFS analysis suggests that a CIB crystal forms by strong N···I interaction, called halogen bonding. The formation of the intermolecular N···I bond was demonstrated by EXAFS analyses in which the N–I distance was determined to be 3.29 Å. An upward shift of the highest occupied molecular orbital level was observed by UPS and can be attributed to the aggregation of CIB molecules caused by halogen bonding.  相似文献   

17.
Non-collinear optical parametric amplifiers (NOPAs) are used for the generation of tunable femtosecond pulses. The spectra of the uncompressed output from a lab-built NOPA in the 470–650 nm range have been recorded. Theoretical simulations for the effect of the length of the β-barium borate (BBO) crystal as well as the non-collinear angles between the pump and seed wavelengths have been carried out. For these we have obtained the initial experimental data from a 2 mm-thick BBO crystal when pumped with the second harmonic of the Ti:sapphire laser pulses of 100 fs duration. The pulse splitting length (PSL) and the group velocity mismatch (GVM) have been considered in simulations of the output. It was found that the crystal length of 1.3 mm and the crystal tilt of approximately 3.7° are optimal for the generation of pulses of ~11 fs at 600 nm.  相似文献   

18.
We present a traveling-wave-type optical parametric amplifier (OPA) pumped at 1.03 μm by a Yb:KGW laser that produces tunable high-energy pulses of 6.5–4 μJ in the mid-infrared (mid-IR) region from 3.6 to 7 μm. Pumping with negatively chirped pulses generates nearly transform-limited (TL) mid-IR pulses of 300–330 fs length. Pumping with TL pulses of 200 fs not only decreases the output energy by a factor of 1.5, but also decreases the mid-IR pulse-length to 160 fs after additional compression. The compact and simple OPA setup is ideal for femtosecond infrared experiments in the fingerprint region.  相似文献   

19.
The room-temperature phosphorescence behavior of erythrosine B (ER) and rose bengal (RB) in aerobic aqueous solution at pH 10 (10?4 M NaOH) is investigated. The samples were excited with sliced second harmonic pulses of a Q-switched Nd:glass laser. A gated photomultiplier tube was used for instantaneous fluorescence signal discrimination and a digital oscilloscope was used for signal recording. For phosphorescence lifetime measurement the oscilloscope response time was adjusted to appropriate time resolution and sensitivity by the ohmic input resistance. In the case of phosphorescence quantum yield determination the gated photomultiplier – oscilloscope arrangement was operated in integration mode using 10 MΩ input resistance. Phosphorescence quantum yield calibration was achieved with erythrosine B and rose bengal doped starch films of known quantum yields. The determined phosphorescence lifetimes (quantum yields) of ER and RB in 0.1 mM NaOH are τP=1.92±0.1 μs (?P=(1.5±0.3)×10?5) and 2.40±0.1 μs ((5.7±0.9)×10?5), respectively. The results are discussed in terms of triplet state deactivation by dissolved molecular oxygen.  相似文献   

20.
The atomic structures of Au and Ag co-adsorption-induced √21 × √21 superstructure on a Si(111) surface, i.e., (Si(111)-√21 × √21-(Au, Ag)), where the Si(111)-5 × 2-Au surface is used as a substrate, have been investigated using reflection high-energy positron diffraction (RHEPD) and photoemission spectroscopy. From core-level spectra, we determined the chemical environments of Ag and Au atoms present in the Si(111)-√21 × √21-(Au, Ag) surface. From the rocking curve and pattern analyses of RHEPD, we found that the atomic coordinates of the Au and Ag atoms were approximately the same as those of the Au and Ag atoms in other Si(111)-√21 × √21 surfaces with different stoichiometries. On the basis of the core-level and RHEPD results, we revealed the atomic structure of the Si(111)-√21 × √21-(Au, Ag) surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号