首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Since the discovery of electrochemically active LiFePO4, materials with tunnel and layered structures built up of transition metals and polyanions have become the subject of much research. A new quaternary arsenate, sodium calcium trinickel aluminium triarsenate, NaCa1–x Ni3–2x Al2x (AsO4)3 (x = 0.23), was synthesized using the flux method in air at 1023 K and its crystal structure was determined from single‐crystal X‐ray diffraction (XRD) data. This material was also characterized by qualitative energy‐dispersive X‐ray spectroscopy (EDS) analysis and IR spectroscopy. The crystal structure belongs to the α‐CrPO4 type with the space group Imma . The structure is described as a three‐dimensional framework built up of corner‐edge‐sharing NiO6, (Ni,Al)O6 and AsO4 polyhedra, with channels running along the [100] and [010] directions, in which the sodium and calcium cations are located. The proposed structural model has been validated by bond‐valence‐sum (BVS) and charge‐distribution (CHARDI) tools. The sodium ionic conduction pathways in the anionic framework were investigated by means of the bond‐valence site energy (BVSE) model, which predicted that the studied material will probably be a very poor Na+ ion conductor (bond‐valence activation energy ∼7 eV).  相似文献   

2.
The core potentials for atoms of atomic numer 1–18 fitted to ion spectra by Chang, Habitz, Pittel, and Schwarz have been extended to the molecular case in a Gaussian lobe basis by using a six-Gaussian (6G-POT ) representation for the exponential factors of the atomic core potentials. In a (9s/5p/1d) basis the 6G-POT one-electron energies, dipole moments, and Mulliken charges are improved over a one-Gaussian potential form for HF, NH3, and H2O; BeO also yields good agreement within 2.6% of the experimental bond length. For HCl, the core potential shows larger errors in the dipole moment (7%) and one-electron eigenvalues (2%), but a 75% saving in computer time is realized for HCl compared with only about 35% for first-row systems using the 6G-POT core potentials. Analytical expressions are given to extend the 6G-POT method up to s, p, d, f, and g valence shells.  相似文献   

3.
Contracted basis sets of double zeta valence quality plus polarization functions (DZP) and augmented DZP basis sets, which were recently constructed for the first‐ and second‐row atoms, are applied to study the electronic ground states of the diatomic molecules CN?, N2, AlF, SiO, PN, SC, ClB, and P2. At the Hartree–Fock (HF) and/or Møller–Plesset second‐order (MP2) levels, total and molecular orbital energies, dissociation energies, bond lengths, harmonic vibrational frequencies, and dipole moments are calculated and compared with available experimental data and with the results obtained from correlation consistent polarized valence basis sets of Dunning's group. For N2, calculations of polarizabilities at the HF and MP2 levels with the sets presented above are also done and compared with results reported in the literature. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

4.
Relativistic density functional calculations have been carried out for the group VI transition metal carbonyls M(CO)5L (M=Cr, Mo, W; L=OH2, NH3, PH3, PMe3, N2, CO, OC (isocarbonyl), CS, CH2, CF2, CCl2, NO+). The optimized molecular structures and M(SINGLE BOND)L bond dissociation energies, as well as the metal–carbonyl bond energy of the trans CO group, have been calculated. Besides the marked dependence of the trans M(SINGLE BOND)CO bond length on the type of ligand L, such an effect on the that bond energy is also observed. For the chromium compounds, the trans Cr(SINGLE BOND)CO bond length varies from 184 to 199 pm and its bond energy from 242 to 150 kJ/mol. For the molybdenum compounds, the range is 197 to 216 pm and 253 to 128 kJ/mol and, for tungsten, 198 to 214 pm and 293 to 159 kJ/mol. The observed trends can be explained with the π acceptor strength of the L ligand. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1985–1992, 1997  相似文献   

5.
PdAs2, PdSb2, PtSb2 and PtBi2 have been formed from reactions of 1-gram samples of the elements in quartz tubes at 923 K, and their crystal structures have been reinvestigated. These materials crystallize with the pyrite structure. The lattice constant, a, and the positional parameter, x, of the nonmetal atoms are the following: PdAs2 5.9790(3) Å, 0.38317(3); PdSb2 6.464(1) Å, 0.3733(1); PtSb2 6.4423(9) Å, 0.3753(2); PtBi2 6.7014(8) Å, 0.3710(1). The metal-nonmetal and the closest nonmetal-nonmetal bond lengths are the following: PdAs2, 2.4949(2), 2.4198(3) Å; PdSb2, 2.6765(9), 2.838(2) Å; PtSb2, 2.671(1), 2.782(2) Å; PtBi2, 2.7706(8), 2.995(2) Å. The platinum-group dipnictides show a strengthening of the nonmetal-nonmetal bond with heavier nonmetal atoms, as evidenced by a bond-valence analysis. These dumbbell bonds are compared to other observed dumbbells in crystals. Comparisons are made to the transition-metal pyrite disulfides, where electronic effects are correlated with the nonmetal-nonmetal bond strength. The valence-matching principle is shown to correlate well with the observed structures of the alkali metal superoxides and alkaline earth metal peroxides. Bond valence analysis for a hypothetical ?cubic”? MnO2 is given along a fluorite to pyrite pathway.  相似文献   

6.
Summary Relativistic calculations on UO2 [1] have shown that relativity leads to substantial bondlengthening in this compound, in contrast to the bond contraction found almost exclusively for other compounds. The bond lengthening isnot caused by the relativistic expansion of the 5f valence AO of U, which is the primary bond forming orbital on U in UO2. The origin of the bond lengthening can be traced back to the semi-core resp. subvalence character of the U 6p AO. The valence character of 6p shows up in an increasing depopulation of the 6p upon bond shortening, and hence loss of mass-velocity stabilization. The core character of 6p shows up in large off-diagonal mass-velocity matrix elements 5p|h MV|6p which are shown to have an overall bond lengthening effect. The larger expansion in UO2 than in UO 2 2+ is due to destabilization of U levels in UO2, caused by repulsion of the two additional 5f electrons.The present analysis corroborates the picture of relativistic bond length effects of Ref. [2].  相似文献   

7.
《Polyhedron》1999,18(5):699-706
Bond valence as the function of inter-nuclear distance for Cu–O and Cu–N bonds were estimated. Based on the developed bond-valence theory a mutual dependence between the bond length in copper coordination sphere with chromophores CuO6, CuO5, CuN6 and CuN4O2 has been derived and compared with the experimental structural correlations. The discontinued transition from chemical bonding to the nonbonding state in the direction of the elongated bond was estimated. The shortest bond lengths are dependent on the copper atom valence. The supreme manifestation of coordination sphere plasticity is estimated as semicoordination. The semicoordinative Cu–O and Cu–N bonds are 3.07 and 2.78 Å long.  相似文献   

8.
Six Cu(II) complexes of 2-(2-(ethylcarbamothioyl)hydrazinyl)-2-oxo-N-phenylacetamide (H3APET) have been prepared and characterized by elemental analyses, spectral (IR, UV–vis, 1H NMR and ESR) as well as magnetic and thermal measurements. The data revealed that the ligand acts as ON bidentate, ONS tridentate or ONNS tetradentate forming structure in which each copper atom is a tetrahedral or tetragonal environment. The bond length, bond angle, HOMO, LUMO, dipole moment and charges on the atoms have been calculated to confirm the geometry of the ligand and the investigated complexes. Kinetic parameters were determined for each thermal degradation stage of the Cu(II) complexes using Coats–Redfern and Horowitz–Metzger methods. Moreover, the ligand and its complexes were screened against bacteria Staphylococcus aureus, Escherichia coli, Candida and fungi, Albicans and Aspergillus flavus using the inhibitory zone diameter.  相似文献   

9.
Quantum chemical calculations using the complete active space of the valence orbitals have been carried out for HnCCHn (n=0–3) and N2. The quadratic force constants and the stretching potentials of HnCCHn have been calculated at the CASSCF/cc‐pVTZ level. The bond dissociation energies of the C?C bonds of C2 and HC≡CH were computed using explicitly correlated CASPT2‐F12/cc‐pVTZ‐F12 wave functions. The bond dissociation energies and the force constants suggest that C2 has a weaker C?C bond than acetylene. The analysis of the CASSCF wavefunctions in conjunction with the effective bond orders of the multiple bonds shows that there are four bonding components in C2, while there are only three in acetylene and in N2. The bonding components in C2 consist of two weakly bonding σ bonds and two electron‐sharing π bonds. The bonding situation in C2 can be described with the σ bonds in Be2 that are enforced by two π bonds. There is no single Lewis structure that adequately depicts the bonding situation in C2. The assignment of quadruple bonding in C2 is misleading, because the bond is weaker than the triple bond in HC≡CH.  相似文献   

10.
The crystal structures of tris(2‐methyl­quinolin‐8‐olato‐N,O)­iron(III), [Fe­(C10­H8­NO)3], (I), and aqua­bis(2‐methyl­quinolin‐8‐olato‐N,O)­copper(II), [Cu­(C10­H8NO)2­(H2O)], (II), have been determined. Compound (I) has a distorted octahedral configuration, in which the central Fe atom is coordinated by three N atoms and three O atoms from three 2‐methylquinolin‐8‐olate ligands. The three Fe—O bond distances are in the range 1.934 (2)–1.947 (2) Å, while the three Fe—N bond distances range from 2.204 (2) to 2.405 (2) Å. In compound (II), the central CuII atom and H2O group lie on the crystallographic twofold axis and the coordination geometry of the CuII atom is close to trigonal bipyramidal, with the three O atoms in the basal plane and the two N atoms in apical positions. The Cu—N bond length is 2.018 (5) Å. The Cu—O bond length in the basal positions is 1.991 (4) Å, while the Cu—O bond length in the apical position is 2.273 (6) Å. There is an intermolecular OW—H?O hydrogen bond which links the mol­ecules into a linear chain along the b axis.  相似文献   

11.
The MeCOCH2CMe2 ligand in X3SnCMe2CH2COMe ( 2 ; X = halide) acts as a C,O‐chelating group both in the solid state and in non‐coordinating solutions. The intramolecular Sn? O bond lengths in trigonal bipyramidal 2 (X = Cl and I), as determined by X‐ray crystallography, indicate that the stronger interaction occurs in 2 X = Cl. Comparisons with the Sn? O bond lengths in the estertin trihalides, X3SnCH2CH2CO2R ( 1 ; R = Me), suggest that the latter form stronger chelates than do 2 . In chlorocarbon solution, 2 (X = Cl, I) undergoes exchange reactions, as shown by NMR spectra, to give all possible halide derivatives, ∑(ClnI3?nSnCMe2CH2COMe) (n = 0–3). Various ab initio calculations on 2 and X3SnCH2CH2COMe ( 3 ) have been carried out. Comparisons of the theoretical and experimental structures of 2 for X = Cl or I are reported. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Localized valence molecular orbitals have been obtained for SO, SO2F2, ClO3F and SOCl2 by the method due to Boys and Foster. The bonding in these molecules, in which the second row atom is exhibiting an excess valency, is discussed in terms of the form of these localized orbitals. The bonding of the second row atom to an oxygen atom is described by three bent bond orbitals, whilst bonding to a halogen atom is described by a single bond orbital. The participation of 3d functions in the various bonding and nonbonding orbitals is analysed in this localized orbital framework.  相似文献   

13.
The electron density near the lithium nucleus in the species LiH, LiH+, Li2, Li2+, LiH2+, and Li2H+ was analyzed by transforming the SCF molecular orbitals into a sum of atomic contribnutions, for both core and valence orbitals. These “hybrid-atomic” orbitals were used to compare: electron densities, orbital polarizations, and orbital mean kinetic energies with the corresponding lithium atom quantities. Core-orbital electron densities at the lithium nucleus were observed to increase by up to 0.5% relative to the lithium atom 1s orbital. Lithium cores also exhibited polarization but, surprisingly, in the direction away from the internuclear region. Similar dramatic changes were seen in the electron densities of the valence orbitals of lithium: The electron density at the nucleus for these orbitals increased two-fold for homonuclear species and twenty-fold for heteronuclear triatomic species relative to the electron density at the nucleus in lithium atom. The polarization of the valence orbital electronic charge, in the vicinity of the lithium nucleus, was also away from the internuclear region. The mean “hybrid-atomic” orbital kinetic energies associated with the lithium atom in the molecules also showed changes relative to the free lithium atom. Such changes, accompanying bond formation, were relatively small for the lithium core orbitals (within 0.2% of the value for lithium atom). The orbital kinetic energies for the lithium valence electrons, however, increased considerably relative to the lithium atom: By a factor of about 2 in homonuclear diatomics, by a factor of 7 in heteronuclear diatomics, and by a factor of 11 in the triatomic species. In summary, the total electronic density (core plus valence) at the lithium nucleus remained remarkably constant for all of the species studied, regardless of the effective charge on lithium. Thus, the drastic changes noted in the individual lithium orbitals occurred in a cooperative fashion so as to preserve a constant total electron density in the vicinity of the lithium nucleus. In all cases, bond formation was accompanied by an increase in the orbital kinetic energy of the lithium valence orbital. We suggest that these two observations represent important and significant features of chemical bonding which have not previously been emphasized.  相似文献   

14.
Ab initio valence bond calculations for the ground and excited states of HF and HF+ are presented. Total energies, equilibrium geometries, dissociation energies, dipole moments, and spectroscopic constants for HF and HF+ have been calculated. The photoelectron spectrum of HF has been examined and interpreted by means of the valence bond formalism. The ground state of the protonated species H2F+ has been investigated.  相似文献   

15.
The valence band (VB) density of states and the binding energies of the weakly bound core levels have been measured by XUV photoelectron spectroscopy using synchrotron radiation for four V–VI layered compounds. Chemical shifts of the core levels are determined which support the partial ionicity of the bonds involved. The chemical shifts of the emission from two unequivalent crystal sites were shown to differ by less than 30 meV for the compounds Bi2Te3, Bi2Se3 and Sb2Te3.VB and core-level photoemission spectra for the V–VI compounds Bi2Te3, Bi2Se3, Sb2Te3 and Se2Te2Se have been presented. Chemical shifts of the Te 4d, Bi 5d, Sb 4d and Se 3d levels were determined, indicating partial ionicity of the mainly covalent bonds involved. Chemical-shift differences originating from atoms at two different crystal sites are <30 meV. In a simple model this implies that similar charge transfers do occur even though completely different bond orbitals were proposed for the and the AB(2) bonds. Finally, the fact that no surface core-level shifts were observed tends to confirm the very weak influence of the van der Waals-like bonds on the B(2) atoms.  相似文献   

16.
Formation, crystal structure, polymorphism, and transition between polymorphs are reported for M(thd)3, (M = Al, Cr, Mn, Fe, Co, Ga, and In) [(thd) = anion of H(thd) = C11H20O2 = 2, 2, 6, 6‐tetramethylheptane‐3, 5‐dione]. Fresh crystal‐structure data are provided for monoclinic polymorphs of Al(thd)3, Ga(thd)3, and In(thd)3. Apart from adjustment of the M–Ok bond length, the structural characteristics of M(thd)3 complexes remain essentially unaffected by change of M. Analysis of the M–Ok, Ok–Ck, and Ck–Ck distances support the notion that the M–Ok–Ck–Ck–Ck–Ok– ring forms a heterocyclic unit with σ and π contributions to the bonds. Tentative assessments according to the bond‐valence or bond‐order scheme suggest that the strengths of the σ bonds are approximately equal for the M–Ok, Ok–Ck, and Ck–Ck bonds, whereas the π component of the M–Ok bonds is small compared with those for the Ok–Ck, and Ck–Ck bonds. The contours of a pattern for the occurrence of M(thd)3 polymorphs suggest that polymorphs with structures of orthorhombic or higher symmetry are favored on crystallization from the vapor phase (viz. sublimation). Monoclinic polymorphs prefer crystallization from solution at temperatures closer to ambient. Each of the M(thd)3 complexes subject to this study exhibits three or more polymorphs (further variants are likely to emerge consequent on systematic exploration of the crystallization conditions). High‐temperature powder X‐ray diffraction shows that the monoclinic polymorphs convert irreversibly to the corresponding rotational disordered orthorhombic variant above some 100–150 °C (depending on M). The orthorhombic variant is in turn transformed into polymorphs of tetragonal and cubic symmetry before entering the molten state. These findings are discussed in light of the current conceptions of rotational disorder in molecular crystals.  相似文献   

17.
The title compounds are formed by peritectic reactions. Single crystals could be isolated from samples with high antimony content. Their structure was determined for Dy2Sb5 from four‐circle X‐ray diffractometer data: P21/m, a = 1306.6(1) pm, b = 416.27(4) pm, c = 1458.4(1) pm, β = 102.213(8)°, Z = 4, R = 0.061 for 2980 structure factors and 86 variable parameters. All dysprosium atoms have nine antimony neighbors forming tricapped trigonal prisms with Dy–Sb distances varying between 308 and 338 pm. The antimony atoms occupy ten different sites with greatly varying coordination. One extreme case is an antimony atom surrounded only by dysprosium atoms in trigonal prismatic arrangement, the other one is an antimony atom in distorted octahedral antimony coordination. The various antimony‐antimony interactions (with Sb–Sb distances varying between 284 and 338 pm) are rationalized by combining the Zintl‐Klemm concept with bond‐length bond‐strength considerations.  相似文献   

18.
Equilibrium geometries, bond dissociation energies and relative energies of axial and equatorial iron tetracarbonyl complexes of the general type Fe(CO)4L (L = CO, CS, N2, NO+, CN, NC, η2‐C2H4, η2‐C2H2, CCH2, CH2, CF2, NH3, NF3, PH3, PF3, η2‐H2) are calculated in order to investigate whether or not the ligand site preference of these ligands correlates with the ratio of their σ‐donor/π‐acceptor capabilities. Using density functional theory and effective‐core potentials with a valence basis set of DZP quality for iron and a 6‐31G(d) all‐electron basis set for the other elements gives theoretically predicted structural parameters that are in very good agreement with previous results and available experimental data. Improved estimates for the (CO)4Fe–L bond dissociation energies (D0) are obtained using the CCSD(T)/II//B3LYP/II combination of theoretical methods. The strongest Fe–L bonds are found for complexes involving NO+, CN, CH2 and CCH2 with bond dissociation energies of 105.1, 96.5, 87.4 and 83.8 kcal mol–1, respectively. These values decrease to 78.6, 64.3 and 64.2 kcal mol–1, respectively, for NC, CF2 and CS. The Fe(CO)4L complexes with L = CO, η2‐C2H4, η2‐C2H2, NH3, PH3 and PF3 have even smaller bond dissociation energies ranging from 45.2 to 37.3 kcal mol–1. Finally, the smallest bond dissociation energies of 23.5, 22.9 and 18.5 kcal mol–1, respectively are found for the ligands NF3, N2 and η2‐H2. A detailed examination of the (CO)4Fe–L bond in terms of a semi‐quantitative Dewar‐Chatt‐Duncanson (DCD) model is presented on the basis of the CDA and NBO approach. The comparison of the relative energies between axial and equatorial isomers of the various Fe(CO)4L complexes with the σ‐donor/π‐acceptor ratio of their respective ligands L thus does not generally support the classical picture of π‐accepting ligands preferring equatorial coordination sites and σ‐donors tending to coordinate in axial positions. In particular, this is shown by iron tetracarbonyl complexes with L = η2‐C2H2, η2‐C2H4, η2‐H2. Although these ligands are predicted by the CDA to be stronger σ‐donors than π‐acceptors, the equatorial isomers of these complexes are more stable than their axial pendants.  相似文献   

19.
20.
《Solid State Sciences》2000,2(3):385-389
The most commonly used equations correlating bond valence and bond length have been critically compared. It has been shown that the Zachariasen equation is more accurate than the Brown–Shannon equation. Doubts already voiced about the universality of the constant B in the Brown–Altermatt equation with a value of 0.37 Å have been hereby confirmed. Moreover, by a method based on the comparison of formal oxidation states and valences of molybdenum in suitable oxides, the parameters relative to the Zachariasen equation have been accurately determined for the MoO bond in MoO6 octahedra. Their values are R1=1.8790 and B=0.3048 Å in the 3–6 v.u. range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号