首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Swelling behavior of polyacrylamide (PAAm) and polyacrylamide-co-polyacrylic acid (PAAm-co-PAAc) gels was investigated in aqueous solutions of monodisperse PAAms with molecular weights (Mw) ranging from 1.5 × 103 to 5 × 106 g/mol. The volume of the gels decreases as the PAAm concentration in the external solution increases. This decrease becomes more pronounced as the molecular weight of PAAm increases. The classical Flory–Huggins (FH) theory correctly predicts the swelling behavior of nonionic PAAm gels in PAAm solutions. The polymer–polymer interaction parameter χ23 was found to decrease as the molecular weight of PAAm increases. The swelling behavior of PAAm-co-PAAc gels in PAAm solutions deviates from the predictions of the FH theory. This is probably due to the change of the ionization degree of AAc units depending on the polymer concentration in the external solution. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1313–1320, 1998  相似文献   

2.
Poly(ε‐caprolactone) films (TONE® 787) were irradiated by electron beam in air prior to grafting in aqueous solutions of acrylamide. The grafting kinetics and molecular weight of the grafted poly(acrylamide) chains were studied with irradiation doses between 2.5 and 20 Mrad and in the Mohr's salt concentration range of 0.0025–1 wt %. The grafting rate and yield were strongly dependent on the Mohr's salt concentration. By molecular weight analysis of grafted poly(acrylamide) chains, it was shown that the molecular weight is approximately proportional to the mass of the grafted PAAm. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1643–1649, 1999  相似文献   

3.
The swelling of polyacrylamide (PAAm) gels increased with rising glucose concentrations, and so did the osmotic pressure of the soluble polymer and its intrinsic viscosity. A Flory–Huggins‐based model for the osmotic pressure of a nonionic hydrophilic polymer in a ternary solution consisting of a main solvent, a polymer, and a nondissociating low‐molecular‐weight cosolute was developed and examined. The model‐calculated values were in reasonably good agreement with experimental results for the water–PAAm–glucose system studied when PAAm–water and glucose–water interaction coefficients from the binary systems were used, and only the PAAm–glucose interaction coefficient was adjusted. Its negative value suggested a favorable interaction of glucose and PAAm, supporting the notion of glucose being a good cosolvent for PAAm. Isothermal titration microcalorimetry results showed no evidence for the binding of glucose to PAAm, but an exothermic interaction was indicated between glucose and PAAm. Microcalorimetrically determined enthalpic contributions to the Flory–Huggins interaction coefficients showed enthalpically favorable binary interactions, particularly the enthalpic component of the PAAm–glucose interaction coefficient (χH23), which was slightly negative. The enthalpically favorable interaction between glucose and PAAm may explain the increased osmotic pressure of PAAm in glucose solutions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3053–3063, 2003  相似文献   

4.
In the mixed solution of toluene and ethanol, polymer micro‐tubes (PMTs) tethered by polymer nanowire networks (PTPWNs) were fabricated facilely via one‐step reversible addition fragmentation chain transfer (RAFT) polymerization by taking N,N′‐methylene bisacrylamide (MBA) xerogel fibers as both template and monomer source. The products were analyzed by FTIR, SEM, TEM, surface area and porosity analyzer, and contact angle tester. The results indicated that PTPWNs were obtained as the sole product at ethanol content of 1.0 wt %. As the content of ethanol increases from 0 to 1.0 wt %, the specific surface area of the products became higher, indicating more polymer nanowire networks (PWNs) on the tubes. At ethanol contents of 1.5 wt % and 2.0 wt %, some particles were also obtained besides PTPWNs. The formation process of PTPWNs was studied by analyzing the products obtained at different reaction time. The results revealed that PTPWNs were formed by two steps, PMTs were formed quickly and then PWNs formed in the solution tethered to the tubes. Moreover, the effect of RAFT agent on the morphologies of the products revealed that PTPWNs could be obtained via RAFT polymerization at suitable dosage of RAFT agent, while polymer particles were generated via conventional free radical polymerization. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1862–1868  相似文献   

5.
Lipase‐catalyzed ring‐opening bulk polymerizations of 6(S)‐methyl‐morpholine‐2,5‐dione (MMD) were investigated. Selected commercial lipases were screened as catalysts for MMD polymerization at 100 °C. Polymerizations catalyzed with 10 wt % porcine pancreatic lipase type II crude (PPL), lipase from Pseudomonas cepacia, and lipase type VII from Candida rugosa resulted in MMD conversions of about 75% in 3 days and in molecular weights ranging from 8200 to 12,100. Poly(6‐methyl‐morpholine‐2,5‐dione) [poly(MMD)] had a carboxylic acid group at one end and a hydroxyl group at the other end. However, lipase from Mucor javanicus showed lower catalytic activity for the polymerization. During the polymerization, racemization of the lactate residue took place. PPL was selected for further studies. The rate of polymerization increased with increasing PPL concentration under otherwise identical conditions. When the PPL concentration was 5 or 10 wt % with respect to MMD, a conversion of about 70% was reached after 6 days or 1 day, respectively, whereas for a PPL concentration of 1 wt %, the conversion was less than 20% even after 6 days. High concentrations of PPL (10 wt %) resulted in high number‐average molecular weights (<3 days); with a lower concentration of PPL, lower molecular weight poly(MMD) was obtained. The concentration of water was an important factor that controlled not only the conversion but also the molecular weight. With increasing water content, enhanced polymerization rates were achieved, whereas the molecular weight of poly(MMD) decreased. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3030–3039, 2005  相似文献   

6.
The presence of cis‐vinylene bonds in Gilch‐polymerized poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐1,4‐phenylene vinylene] is reported. Through fractionation, species with a weight‐average molecular weight of less than 37,000 exhibited an abnormal blueshift of photoluminescence spectra in toluene solutions, and this was attributed to the presence of cis‐vinylene bonds, as verified by NMR spectroscopy. Surprisingly, the fractionated species (~1 wt %) with a weight‐average molecular weight of 5000 were mostly linked by the cis‐vinylene bonds. The concentration decreased with the molecular weight until a molecular weight of 37,000 was reached; at that point, the polymer chains contained mainly trans‐vinylene bonds. Obviously, the formation of cis‐vinylene bonds strongly inhibited the growth of polymer chains during Gilch polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2520–2526, 2005  相似文献   

7.
The reversible addition–fragmentation chain transfer polymerization of methyl methacrylate mediated by 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) in bulk (60 and 70 °C) and suspension (70 °C) was studied, and in both polymerization systems, a good control of the molecular weight and polydispersity was observed. Stable suspension polymerizations were carried out over a range of CPDB concentrations, and with increasing CPDB concentration, the particle size and polydispersity index of the produced polymer decreased. The former was ascribed to the lower viscosities of the monomer and polymer droplets at low conversions, which caused easier breakup with the applied shear stresses. Lower polydispersity indices at higher CPDB concentrations were probably caused by a diminished gel effect, which was observed at lower CPDB concentrations at high conversions, causing a broadening of the molecular weight distribution. The livingness of the polymers formed in suspension was proven by successful chain extensions with methyl methacrylate, styrene, and 2‐hydroxyethyl methacrylate. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2001–2012, 2005  相似文献   

8.
The thermal curing reaction of polyfunctional oxetanes (oxetane resins) such as tris[4‐(3‐ethyloxetane‐3‐yl)methoxyphenyl]methane (TEOMP) and 1,3,5‐tris(3‐ethyl‐3‐oxetanylmethoxy)benzene with certain polyfunctional phenols was performed in bulk with quaternary onium salts as catalysts. The reaction proceeded smoothly at 180–220 °C and produced insoluble gel products, and the rate of gel production increased with the reaction temperature. The rate of the addition reaction of TEOMP with 3,3′,5,5′‐tetrachlorobisphenol A was also measured by IR spectroscopy, and the rate of reaction was proportional to the product of the oxetane concentration and the catalyst concentration in the film state. Furthermore, the glass‐transition temperatures and 5 and 10 wt % weight‐loss temperatures of the resulting gel products were confirmed with differential scanning calorimetry and thermogravimetric analysis, and the glass‐transition temperatures and 5 wt % weight‐loss temperatures were 127–162 °C and 323–351 °C, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2028–2037, 2005  相似文献   

9.
In this article, we report on the viscoelastic and thermal properties of agarose–polyacrylamide (PAAm) interpenetrating polymer hydrogels (IPHs) and semi‐IPHs as a function of agarose concentration and PAAm crosslinking degree. The results demonstrated that the agarose is able to gel in the presence of crosslinked and linear IPHs. In addition, the reticulation of PAAm in the presence of agarose is confirmed for the case of IPHs giving rise to systems with dimensional stability at high temperatures. The formation of a fully IPH was ascertained at low agarose concentrations. A study of the morphology and nanoscale elasticity of the different systems has been carried out with atomic force microscopy/ultrasonic force microscopy (UFM). UFM data provide further evidence of interpenetration, allowing us to visualize—if present—phase‐separated domains with nanoscale resolution for the various crosslinking degrees and PAAm and agarose concentrations used during the formation of the IPHs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

10.
Gas-phase polymerizations have been executed at different temperatures, pressures, and hydrogen concentrations using Me2Si[Ind]2ZrCl2 / methylaluminoxane / SiO2(Pennsylvania Quarts) as a catalyst. The reaction rate curves have been described by a kinetic model, which takes into account the initially increasing polymerization rate. The monomer concentration in the polymer has been calculated with the Flory–Huggins equation. The kinetic parameters have been determined by fitting the reaction rate curves with the model. At high temperatures, pressures, and hydrogen concentrations a runaway on particle scale may occur leading to reduced polymer yields. The molecular weight and molecular weight distribution of the polymer samples could be described by a “two-site model.” At constant temperature the chain-transfer probability of sites 1 and 2 depends only on the hydrogen concentration divided by the monomer concentration. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 500–513, 2001  相似文献   

11.
Three series of semi‐interpenetrating polymer networks, based on crosslinked poly(N‐isopropyl acrylamide) (PNIPA) and 1 wt % nonionic or ionic (cationic and anionic) linear polyacrylamide (PAAm), were synthesized to improve the mechanical properties of PNIPA gels. The effect of the incorporation of linear polymers into responsive networks on the temperature‐induced transition, swelling behavior, and mechanical properties was studied. Polymer networks with four different crosslinking densities were prepared with various molar ratios (25:1 to 100:1) of the monomer (N‐isopropyl acrylamide) to the crosslinker (methylenebisacrylamide). The hydrogels were characterized by the determination of the equilibrium degree of swelling at 25 °C, the compression modulus, and the effective crosslinking density, as well as the ultimate hydrogel properties, such as the tensile strength and elongation at break. The introduction of cationic and anionic linear hydrophilic PAAm into PNIPA networks increased the rate of swelling, whereas the presence of nonionic PAAm diminished it. Transition temperatures were significantly affected by both the crosslinking density and the presence of linear PAAm in the hydrogel networks. Although anionic PAAm had the greatest influence on increasing the transition temperature, the presence of nonionic PAAm caused the highest dimensional change. Semi‐interpenetrating polymer networks reinforced with cationic and nonionic PAAm exhibited higher tensile strengths and elongations at break than PNIPA hydrogels, whereas the presence of anionic PAAm caused a reduction in the mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3987–3999, 2004  相似文献   

12.
The precipitation polymerization of acrylic acid in supercritical carbon dioxide was studied in a continuous stirred tank reactor with 2,2′‐azobis(2,4‐dimethylvaleronitrile) as the free‐radical initiator. The reactor temperature was between 50 and 90 °C, the pressure was 207 bar, and the average residence time was between 12 and 40 min. The product polymer was a white, dry, fine powder that dissolved in water. A wide range of polymer molecular weights (5–200 kg/mol) was obtained. The effects of the operating variables on the polymerization rate and on the polymer molecular weight were evaluated. The observed kinetics suggested that polymerization took place in both the supercritical fluid and the precipitated polymer particles. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2546–2555, 2005  相似文献   

13.
Polybenzoxazole (PBO) fibers with a submicron diameter were successfully prepared by electrospinning its precursor, polyhydroxyamide (PHA), solutions to obtain the PHA fibers first, followed by appropriate thermal treatments for cyclization reaction. BisAPAF‐IC PHA with two different molecular weights (MWs) were synthesized from a low temperature polymerization of 2,2′‐bis(3‐amino‐4‐hydroxyphenyl) hexafluoropropane (BisAPAF) and isophthaloyl chloride (IC). Using dimethylacetamide (DMAc) and tetrahydrofuran (THF), solvent effects on the electrospinnability of PHA solutions were investigated. For balancing the solution properties, it was found that DMAc/THF mixture with a weight ratio of 1/9 was the best cosolvent to prepare smooth PHA fibers; uniform PHA fibers with a diameter of 325–720 nm were obtained by using 20 wt % PHA/(DMAc/THF) solutions. For a fixed PHA concentration, solutions with a lower MW of PHA yielded thinner electrospun fibers under the same electrospinning condition. After obtaining the electrospun BisAPAF‐IC PHA fibers, subsequent thermal cyclization up to 350 °C produced the corresponding thermally stable BisAPAF‐IC PBO fibers with a diameter of 305–645 nm. The structure of the precursor fibers and the fully cyclized fibers were characterized by FTIR. For the cyclized BisAPAF‐IC PBO fibers, thermogravimetric analysis showed a 5% weight loss temperature at 523 °C in nitrogen atmosphere. The interconnected fiber structure in the BisAPAF‐IC PBO fiber mats was irrelevant to the curing process, but resulted from the jet merging during the whipping process as revealed by the high speed camera images. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8159–8169, 2008  相似文献   

14.
Stimulus response of photopolymerized 1% and 0.5% N,N′‐methylene bisacrylamide (MBA) crosslinked 10% polyacrylamide (PAAm) hydrogels was studied in nitric acid. The hydrogels swelled exponentially to saturation in 13 h due to the osmotic pressure arising from diffusion of ions in to the gel. MBA (0.5%) gels swell more with larger time constant than 1% MBA gels due to lower bulk modulus. Diffusion coefficient of nitric acid in the hydrogel and polymer‐solvent interaction parameter were estimated from the swelling behavior and discussed. At longer times, the hydrogels deswelled linearly in nitric acid due to molecular modification of amide group by acidic hydrolysis. Degree of swelling and deswelling increase with nitric acid concentration. Raman and FTIR investigations revealed the formation of carboxylic acid due to acidic hydrolysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 710–720, 2008  相似文献   

15.
The preparation of a stabile blend from thermoplastic polymer and lubricating additive was studied with high density polyethylene (HDPE) and perfluoropolyether (PFPE). PFPE was melt blended within HDPE by injection molding. The chemical composition of the mixtures, the relative amount of PFPE on the surface, and the nature of the surface were studied by three surface sensitive methods: attenuated total reflectance infrared (ATR‐IR) spectroscopy, secondary ion mass spectroscopy (SIMS), and contact angle (CA) measurement. All the blends exhibited improved hydrophobicity. CA and SIMS gave a maximum response when about 2.0 wt % PFPE was added, whereas ATR‐IR spectroscopy gave maximum response for an addition of about 3.0 wt %. No changes in surface properties were observed when samples were reanalyzed about 1–4 months after preparation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2252–2258, 2005  相似文献   

16.
The swelling of poly(acrylamide) (PAAm) gels and the osmotic pressure of linear PAAm in aqueous solutions were predominantly affected by anion type and increased according to the lyotropic series ranking of sodium halide anions: F? < (H2O) < Cl? < Br? < I?. The osmotic pressure of PAAm in all examined salt solutions followed the scaling theory, with an exponent of 2.3 ± 0.1. In solutions of a sodium halide series, the value of the pre‐exponential factor seemed to depend on salt concentration, anion radius, and the apparent “anionic‐portion radius” of the water molecule. This radius, extracted from the literature data, marks a transition point of the anion radius effect. Larger anions increase the osmotic pressure of PAAm more significantly as their concentration increases and vice versa. The effects of the anions on the osmotic pressure of PAAm are related to their preferential interactions with the polymer. Iodide, which increased the osmotic pressure of PAAm with respect to its value in pure water, seemed to preferentially adsorb onto the polymer with a binding constant of Kb = 9.7 ± 2.0 M?1 determined by isothermal titration microcalorimetry. However, fluoride, which decreased the osmotic pressure, was preferentially repulsed. The mechanisms of attraction and repulsion were attributed to ion‐water‐polymer interactions and the solvent quality of the hydrated ions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 508–519, 2003  相似文献   

17.
Bionanocomposites of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (P3HB3HHx) (13 % by mol of HHx) with multiwalled carbon nanotubes (MWCNTs) were prepared to obtain semiconductive nanocomposites for potential applications as scaffolds for nerve repair. The effect of the polymer/nanotube interface on the composite properties was studied using oxidized (oxi‐MWCNTs) and surface modified MWCNTs with low‐molecular weight P3HB3HHx (pol‐MWCNTs), in a ratio from 0.3 to 1.2 wt % for each type of MWCNTs employed. Morphology and conductive properties of the composites indicated a good interaction between pol‐MWCNTs and the polymer matrix. Composites with improved conductivity were obtained with only 0.3 wt % of pol‐MWCNTs added. However, agglomeration and lower conductivity was observed for samples with oxi‐MWCNTs. Cell viability studies carried out with neurospheres showed that samples with 1.2 wt % of pol‐MWCNTs are not cytotoxic and, in addition favors the neurospheres growth on the composite surface. Considering the electrical properties and biological behavior, nanocomposites of P3HB3HHx and pol‐MWCNTs are promising substrates for the regeneration of nerve tissue. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 349–360  相似文献   

18.
Strain‐hardening behavior in the elongational viscosity of binary blends composed of a linear polymer and a crosslinked polymer, in which the molecular chains of the linear polymer were incorporated into the network chains of the crosslinked polymer, was studied. Blending the crosslinked polymer characterized as the gel just beyond the sol–gel transition point greatly enhanced the strain‐hardening behavior in the elongational viscosity, even though the amount of the crosslinked polymer was only 0.3 wt %. However, the crosslinked polymer, which was far beyond or below the sol–gel transition point, had little influence on the elongational viscosity as well as the shear viscosity. The stretching of the chain sections between the crosslink points was responsible for the strain‐hardening behavior. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 228–235, 2001  相似文献   

19.
Rod–coil amphiphilic diblock copolymers, consisting of oligo(p‐phenylenevinylene) (OPV) as a rod and hydrophobic block and poly(ethylene oxide) (PEO) as a coil and hydrophilic block, were synthesized by a convergent method. The aggregation behavior of the block copolymers in a selective solvent (tetrahydrofuran/H2O) was probed with the absorption and emission of the OPV block. With increasing H2O concentration, the absorption maximum was blueshifted, the emission from the molecularly dissolved OPV decreased, and that from the aggregated OPV increased. This indicated that the OPV blocks formed H‐type aggregates in which the OPV blocks aligned in a parallel orientation with one another. The transmission electron microscopy observation revealed that the block copolymers with PEO weight fractions of 41 and 62 wt % formed cylindrical aggregates with a diameter of 6–8 nm and a length of several hundreds nanometers, whereas the block copolymer with 79 wt % PEO formed distorted spherical aggregates with an average diameter of 13 nm. Furthermore, the solubilization of an OPV homooligomer with the block copolymer was studied. When the total polymer concentration was less than 0.1 wt %, the block copolymer solubilized OPV with a 50 mol % concentration. The structure of the aggregates was a cylinder with a relatively large diameter distribution. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1569–1578, 2005  相似文献   

20.
We have investigated the ultrafast dynamics of aqueous polyacrylamide ([-CH(2)CH(CONH(2))-](n), or PAAm) solutions using femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The observed aqueous PAAm dynamics are nearly identical for both M(w) = 1500 and 10 000. Aqueous propionamide (CH(3)CH(2)CONH(2), or PrAm) solutions were also studied, because PrAm is an exact model for the PAAm constitutional repeat unit (CRU). The longest time scale dynamics observed for both aqueous PAAm and PrAm solutions occur in the 4-10 ps range. Over the range of concentrations from 0 to 40 wt %, the picosecond reorientation time constants for the aqueous PAAm and PrAm solutions scale linearly with the solution concentration, despite the fact that the solution shear viscosities vary exponentially from 1 to 264 cP. For a given value of solution concentration in weight percent, constant ratios of measured reorientation time constants for PAAm to PrAm are obtained. This ratio of PAAm to PrAm reorientation time constants is equal to the ratio of the volume for the PAAm constitutional repeat unit (-CH(2)CHCONH(2)-) to the molecular volume of PrAm. For these reasons, we assign the polymer reorientation dynamics to motions of the entire constitutional repeat unit, not only side group motions. Simple molecular dynamics simulations of H[-CH(2)CH(CONH(2))-](7)H in a periodic box with 180 water molecules support this assignment. Amide-amide and amide-water hydrogen-bonding interactions lead to strongly oscillatory femtosecond dynamics in the Kerr transients, peaking at 80, 410, and 750 fs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号