首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Three stages of elastic behavior were observed during cyclic deformations for poly(ether‐b‐amide) (PEBA) segmented copolymers based on crystalline hard segments of polyamide 12 (PA12) and amorphous soft segments of poly(tetramethylene oxide) (PTMO). The underlying microstructural evolution was characterized by a combination of in situ Fourier transform infrared spectroscopy (FTIR), wide‐angle X‐ray diffraction (WAXD), and small‐angle X‐ray scattering (SAXS) technologies. The γ–α″ phase transition of crystalline PA12 occurred upon stretching, and the orientation of the α″ phase was less reversible under larger strains. PTMO chain orientation cannot be restored to the initial state, contributing to plastic deformation. Driven by the entropy effect, the strain‐induced crystallization of PTMO can fuse during sample retarding, exerting little influence on the residual strain. For PEBA with a shore D hardness of 35 D, the long period (L) can be restored to the initial L after the sample was unloaded until system fibrillation. The tie molecules between adjacent oriented lamellae can be by drawn out high stress in a PEBA material with a shore D hardness of 40 D, and the relaxation led to a second long period. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 855–864  相似文献   

2.
Novel polyurethanes consisting of polyisobutylene (PIB)/poly(tetramethylene oxide) (PTMO) or PIB/poly(hexamethylene carbonate) (PC) soft co‐segments in combination with 4,4′‐methylene‐bis(cyclohexyl isocyanate)/1,6‐hexanediol, 1,4‐butanediol, or 1,6‐hexamethylene diamine hard segments exhibit excellent mechanical properties (upto 31 MPa tensile strength with 700% elongation) together with unprecedented oxidative/hydrolytic stability. A structural model of the morphology of these polyurethanes was developed that reflects this combination of properties. The key new elements of our model are H bridges between the PTMO and PC type soft and urethane hard segments, which compatibilize the soft and hard domains, and the presence of large quantities of chemically resistant PIB soft segments that protect the other oxidatively/hydrolytically vulnerable constituents. A variety of FTIR, DSC, SAXS, AFM, and DMTA experiments strongly support the proposed morphological model. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6180–6190, 2009  相似文献   

3.
The effects of incorporating metal‐binding ligands as chain extenders in polyurethane elastomers were investigated. Segmented polyurethanes based on 2 kDa poly(tetramethylene oxide) (PTMO) and 4,4‐methylenebis(cyclohexyl isocyanate) were polymerized using a two‐step process in which 2,6‐bis(1‐ethyl‐5‐(methoxymethyl)‐1H‐benzo[d]imidazol‐2‐yl)pyridine was added as a chain extender. The resulting polyurethanes were then metallated using stoichiometric amounts of Zn(II) metal salts with different counterions. The resulting metallopolymers have substantially improved Young's moduli, increased failure stress, and improved thermomechanical behavior. The materials were microphase‐separated into anisotropic hard domains within a PTMO matrix. Simultaneous small‐angle X‐ray scattering and tensile testing revealed the minority hard segment domains remain relatively intact during elongation, likely due to the strength of the metal–ligand complex. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1744–1757  相似文献   

4.
The synthesis, characterization, and structure–property behavior of polyurethanes containing polyisobutylene (PIB)/poly(tetramethylene oxide) (PTMO) soft co‐segments and bis(4‐isocyanatocyclohexyl)methane (HMDI)/hexanediol (HDO) hard segments is presented. The mechanical (stress/strain, hardness, and hysteresis) properties of these novel polyurethanes were investigated over a broad composition range. PIB‐based polyurethanes with HMDI/HDO hard segments showed better mechanical properties than earlier polyurethanes containing highly crystalline hard segments. The addition of moderate amounts (20% by weight) of PTMO significantly increased both tensile strengths and elongation. In the presence of larger amounts of PIB, these polyurethanes are expected to possess oxidative/hydrolytic/enzymatic stabilities superior to commercially available polyurethanes. These polyurethanes are softer and exhibit hysteresis superior to or comparable with conventional polyurethanes. According to initial thermal studies, these materials show good melt processibility. Overall, the mechanical properties of PIB based hybrid polyurethanes are similar to commercially important polyurethane type biomaterials. Our results show that the incorporation of PTMO segments to PIB‐based polyurethanes significantly improves elastomeric properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5278–5290, 2009  相似文献   

5.
The design, synthesis, characterization, and structure–property behavior of polyureas containing novel soft segments of mixed polyisobutylene (PIB)/poly(tetramethylene oxide) (PTMO) chains and conventional hard segments is presented. Modest amounts (12%) of PTMO in the soft PIB phase significantly increase both the tensile strength and elongation of the polyureas. These polyureas exhibit not only oxidative/hydrolytic stabilities far superior to Bionate® and Elast‐Eon® considered the most oxidatively stable polyurethanes on the market but also display mechanical properties (29 MPa tensile strength and 200% elongation) approaching those of conventional thermoplastic polyurethanes. The surfaces of these polyureas are covered/protected by PIB segments, which will lead to excellent biocompatibility. Our results demonstrate that the PTMO segments facilitate stress transfer from the continuous mixed soft phase to the dispersed hard phase, which strengthens and flexibilizes PIB‐based polyureas and thus significantly improves elastomeric properties without compromising oxidative and hydrolytic stability. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2787–2797, 2009  相似文献   

6.
Morphology and tensile properties of model thermoplastic polyurethanes (TPUs) containing polyisobutylene (PIB) or poly(tetramethylene oxide) (PTMO) based soft segment and 4,4‐methylene bis(phenyl isocyanate) (MDI) and 1,4‐butanediol (BDO) based monodisperse hard segments (HSs), consisting of exactly two to four MDI units extended by BDO, were investigated. Using FT‐IR spectroscopy, increased hydrogen bonded C?O fraction was observed in model TPUs as the HS size increased. The hydrogen bonded C?O fraction was higher in PIB based TPUs compared with PTMO based TPUs, indicating higher phase separation in PIB based TPUs. The morphology of TPUs was investigated using AFM phase imaging, which showed ribbon‐like or interconnected hard domains in PTMO based model TPUs and randomly dispersed hard domains in PIB based model TPUs. SAXS revealed that the degree of phase separation in the model TPUs was higher than in their polydisperse analogues. Domain spacing as well as interfacial thickness increased with the increasing HS size, and both values were higher in PTMO based TPUs. The tensile analysis indicated that model TPUs exhibited higher modulus and slightly higher elongation compared with their polydisperse analogues. Only in PTMO based model TPUs, strain induced crystallization was observed above 300% elongation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2485–2493  相似文献   

7.
The structural evolution of fluoroelastomer F2314 is studied during uniaxial tensile in a large strain rate range (0.1–150 s?1) with the combination of a homemade high‐speed stretching device and in situ small‐ and wide‐angle X‐ray scattering techniques. Based on the mechanical behaviors and structural evolutions, three strain rate regions (I–III) are defined. The microphase‐separated structure plays an important role in the mechanical response of F2314. In Region I, deformation of soft domains is the main process before yielding, accompanied by the destruction of lamellar crystals in hard domains. In the stress plateau zone, deformation of hard domains is confirmed as the primary mechanism of energy dissipation. With the orientation parameter of the amorphous phase reaching a critical value, strain hardening is triggered. Recrystallization also takes place in strain hardening zone. In Region II, due to the mismatch between the mobility of molecular chains in hard domains and the acting time of stress, large deformation of hard domains is more and more difficult to occur with the disappearance of recrystallization. In Region III, as almost all molecular chains have no time to adjust or relax to fit the stress field, the sample presents a brittle fracture. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 607–620  相似文献   

8.
A new approach to obtain imide‐containing elastic polymers (IEPs) via elastic and high‐molecular‐weight polyureas, which were prepared from α‐(4‐aminobenzoyl)‐ω‐[(4‐aminobenzoyl)oxy]‐poly(oxytetramethylene) and the conventional diisocyanates such as tolylene‐2,4‐diisocyanate(2,4‐TDI), tolylene‐2,6‐diisocyanate(2,6‐TDI), and 4,4′‐diphenylmethanediisocyanate (MDI), was investigated. IEP solutions were prepared in high yield by the reaction of the polyureas with pyromellitic dianhydride in N‐methyl‐2‐pyrrolidone (NMP) at 165°C for 3.7–5.2 h. IEPs were obtained by the thermal treatment at 200°C for 4 h in vacuo after NMP was evaporated from the resulting IEP solutions. We assumed a mechanism of the reaction via N‐acylurea from the identification of imide linkage and amid acid group in IEP solutions. NMR and FTIR analyses confirmed that IEPs were segmented polymers composed of imide hard segment and poly(tetramethylene oxide) (PTMO) soft segment. The dynamic mechanical and thermal analyses indicated that the IEPs prepared from 2,6‐TDI and MDI showed a glass‐transition temperature (Tg ) at about −60°C, corresponding to Tg of PTMO segment, and suggested that microphase‐separation between the imide segment and the PTMO segment occured in them. TGA studies indicated the 10% weight‐loss temperatures (T10) under air for IEPs were in the temperature range of 343–374°C. IEPs prepared from 2,6‐TDI and MDI showed excellent tensile properties and good solvent resistance. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 715–723, 2000  相似文献   

9.
Novel star‐shaped hard–soft triblock copolymers, 4‐arm poly(styrene)‐block‐poly [poly(ethylene glycol) methyl ethyl methacrylate]‐block‐poly{x‐[(4‐cyano‐4′‐biphenyl) oxy] alkyl methacrylate} (4PS‐PPEGMA‐PMAxLC) (x = 3, 10), with different mesogen spacer length are prepared by atom‐transfer radical polymerization. The star copolymers comprised three different parts: a hard polystyrene (PS) core to ensure the good mechanical property of the solid‐state polymer, and a soft, mobile poly[poly(ethylene glycol) methyl ethyl methacrylate] (PPEGMA) middle sphere responsible for the high ionic conductivity of the solid polyelectrolytes, and a poly{x‐[(4‐cyano‐4′‐biphenyl)oxy]alkyl methacrylate} with a birefringent mesogens at the end of each arm to tuning the electrolytes morphology. The star‐shaped hard–soft block copolymers fusing hard PS core with soft PPEGMA segment can form a flexible and transparent film with dimensional stability. Thermal annealing from the liquid crystalline states allows the cyanobiphenyl mesogens to induce a good assembly of hard and soft blocks, consequently obtaining uniform nanoscale microphase separation morphology, and the longer spacer is more helpful than the shorter one. There the ionic conductivity has been improved greatly by the orderly continuous channel for efficient ion transportation, especially at the elevated temperature. The copolymer 4PS‐PPEGMA‐PMA10LC shows ionic conductivity value of 1.3 × 10?4 S cm?1 (25 °C) after annealed from liquid crystal state, which is higher than that of 4PS‐PPEGMA electrolyte without mesogen groups. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4341–4350  相似文献   

10.
Biodegradable poly(L ‐lactide‐co‐ε‐caprolactone) copolymers with different L ‐lactide (LLA)/ε‐caprolactone (CL) ratios of 75/25 and 50/50 were electrospun into fine fibers. The deformation behavior of the electrospun membranes with randomly oriented structures was evaluated under uniaxial tensile loading. The electrospun membrane with a higher LLA content showed a significantly higher tensile modulus but a similar maximum stress and a lower ultimate strain in comparison with the membrane with a lower LLA content. The beaded fibers that formed in the membranes caused lower tensile properties. X‐ray diffraction and differential scanning calorimetry results suggested that the electrospun fine fibers developed highly oriented structures in CL‐unit sequences during the electrospinning process even though the concentration was only 25 wt %. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3205–3212, 2005  相似文献   

11.
Melt of a segmented block copolymer having poly(lauryl lactam) as the hard segment and poly(tetramethylene oxide) as the soft segment was investigated by rheological techniques. Storage modulus of the polymer melt exhibits the nonterminal behavior resembling those of diblock and triblock copolymer melts, indicating the existence of a microphase‐separated structure. Contrary to block copolymers, the melt of the segmented block copolymer changes from a weak structure to a stiff one upon raising temperature. The storage modulus of the weak structure at low temperatures is inert to large‐amplitude oscillatory shear, while the oscillatory shear destroys the stiff structure at high temperatures and reduces its storage modulus to a value that is same as that of the weak structure. The tapping‐mode data of atomic force microscopy reveal that at low temperatures the polymer melt exhibits a biphasic structure consisted of small spherical soft domains dispersed in a slightly harder matrix; and at high temperatures the spherical domain structure preserves, though the domain coarsens and the hardness difference between the domain and the matrix enlarges. Infrared spectrum analysis shows that the temperature‐induced structural change is related to the dissociation of hydrogen bonding between the hard and soft segments. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2557–2567, 2005  相似文献   

12.
Double‐network (DN) gels subjected to cyclic deformation (stretching up to a fixed strain followed by retraction down to the zero stress) demonstrate a monotonic decrease in strain with time (self‐recovery). Observations show that the duration of total recovery varies in a wide interval (from a few minutes to several days depending on composition of the gel), and this time is strongly affected by deformation history. A model is developed for the kinetics of self‐recovery. Its ability to describe stress–strain diagrams in cyclic tests with various periods of recovery is confirmed by comparison with observations on several DN gels. Numerical simulation reveals pronounced enhancement of fatigue resistance in multi‐cycle tests with stress‐ and strain‐controlled programs when subsequent cycles of deformation are interrupted by intervals of recovery. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 438–453  相似文献   

13.
The evolution in the hard/soft domain microstructure of an elastomeric‐like polyurea during different tensile loading histories was studied using in situ small‐ and wide‐angle X‐ray scattering (SAXS/WAXS). The nonlinear stress–strain behavior is initially stiff with a rollover yield to a more compliant response; unloading is highly nonlinear showing substantial hysteresis while also exhibiting significant recovery. Reloading reveals a substantially more compliant “softened” behavior and dramatically reduced hysteresis. WAXS peaks monitor characteristic dimensions of regular features within the hard domains; the peak location remains unchanged with tensile deformation indicating no separation of the internal structure within a domain, but the peak intensity becomes anisotropic with deformation evolving in a reversible manner consistent with orientation due to stretch. The SAXS profiles provide information between major hard domains. SAXS peaks are found to shift with tensile loading in a relatively affine manner up to a tensile true strain of ~0.4, which, using a Bragg reduction to aid interpretation, reveals an axial increase and a transverse decrease in interdomain spacings; this evolution is reversible for strains less than ~0.4. Increasing axial strain beyond a true strain of ~0.4 is accompanied by a dramatic, progressive, and irreversible reduction in axial Bragg spacing, indicating a breakdown in the hard domain aggregate network structure. A four‐point pattern is seen to develop during stretching. The breakdown in networked structure during a first load cycle gives a new structure for subsequent load cycles, which is seen to evolve in a reversible manner for strains less than or equal to the prior maximum strain. However, for strains exceeding the prior maximum strain excursion, additional breakdown is found. These SAXS results show that a breakdown in the hard domain aggregate network structure is a governing mechanism for the large dissipation (hysteresis) loops of the first load cycle and are also responsible for the softened reloading response. The absence of structure breakdown during subsequent load cycles corresponds to the substantially reduced hysteresis loops as well as the stable softened behavior. DMA data on pristine and previously deformed samples show a more compliant storage modulus in the predeformed sample, supporting the softened cyclic stress–strain data and the structural breakdown observed in the SAXS; the loss modulus was unchanged with deformation, which correlates with the lossy features measured in DMA with time‐dependent viscosity rather than losses due to structural breakdown. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

14.
A series of poly(dimethylsiloxane‐urethane) elastomers based on hexamethylenediisocyanate, toluenediisocyanate, or 4,4′‐methylenediphenyldiisocyanate hard segment and polydimethylsiloxane (PDMS) soft segment were synthesized. In this study, a new type of soft‐segmented PDMS crosslinker was synthesized by hydrosilylation reaction of 2‐allyloxyethanol with polyhydromethylsiloxane, using Karstedt's catalyst. The synthesized soft‐segmented crosslinker was characterized by FT‐IR, 1H, and 13C NMR spectroscopic techniques. The mechanical and thermal properties of elastomers were characterized using tensile testing, thermogravimetric analysis, differential scanning calorimetry (DSC), and dynamical mechanical analysis measurements. The molecular structure of poly(dimethylsiloxane‐urethane) membranes was characterized by ATR‐FTIR spectroscopic techniques. Infrared spectra indicated the formation of urethane/urea aggregates and hydrogen bonding between the hard and soft domains. Better mechanical and thermal properties of the elastomers were observed. The restriction of chain mobility has been shown by the formation of hydrogen bonding in the soft and hard segment domains, resulting in the increase in the glass‐transition temperature of soft segments. DSC analysis indicates the phase separation of the hard and soft domains. The storage modulus (E′) of the elastomers was increasing with increase in the number of urethane connections between the hard and soft segments. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2980–2989, 2006  相似文献   

15.
Hydrogen bonding between hard segments has a critical effect on the morphology and properties of polyurethanes. Influence of temperature on hydrogen bonded urethane network and melting behavior of a model semicrystalline segmented polyurethane was investigated by experiments and simulations. Polyurethane was synthesized by the stoichiometric reaction between p‐phenylene diisocyanate and poly(tetramethylene oxide) (PTMO) with a molecular weight of 1000 g/mol. Simulations were carried out using dissipative particle dynamics (DPD) and molecular dynamics (MD) approaches. Experimental melting behavior obtained by various techniques was compared with simulations. DPD simulations showed a room temperature microphase morphology consisting of a three‐dimensional hydrogen‐bonded urethane hard segment network in a continuous and amorphous PTMO matrix. The first‐order melting transitions of crystalline urethane hard segments observed during the continuous isobaric heating in DPD and MD simulations (340–360 K) were in reasonably good agreement with those observed experimentally, such as AFM (320–340 K), WAXS (330–360 K), and FTIR (320–350 K) measurements. Quantitative verification of the melting of urethane hard segments was demonstrated by sharp discontinuities in energy versus temperature plots obtained by MD simulations due to substantial decrease in the number of hydrogen bonds above 340 K. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 182–192  相似文献   

16.
Amine‐terminated monodisperse hard segments (MDHSs) containing two to four 4,4′‐methylenebis (phenyl isocyanate) extended by 1,4‐butanediol have been synthesized using carboxybenzyl protecting‐deprotecting strategy. Pure MDHSs in large scale were obtained in good yield and their structures were confirmed by 1H‐, 13C‐NMR spectroscopy and GPC‐MALLS. Differential scanning calorimetry (DSC) showed that as the hard segment (HS) size increased, the melting and glass transition temperature and the change of heat capacity at glass transition of ethyl capped MDHSs increased. Model thermoplastic polyurethanes (TPUs) were synthesized using the reaction of bischloroformate of poly (tetramethylene oxide) (PTMO) diol or polyisobutylene (PIB) diol with amine‐terminated MDHSs. X‐ray diffraction results indicated the amorphous structure of model TPUs. DSC revealed HS related endotherms, regardless of SS, which were attributed to the local ordering of the HSs. Additional endotherms in PTMO based model TPUs might arise from the dissociation of hydrogen bonding between PTMO and HSs. The lower Tg in model TPUs compared to the polydisperse analogues observed by dynamic mechanical analysis (DMA) indicated higher microphase separation of monodisperse HSs. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3171–3181  相似文献   

17.
Soft tissues, such as fat and skin, present high flexibility and are capable of withstanding large deformation in various functions. Hydrogels that can resemble the mechanical performance of soft tissue are unique and widely demanded. In this study, micellar hydrogels based on biocompatible poly(l ‐glutamic acid) (PLGA) were designed with the enhanced capacity to bear large deformation. Amphipathic triblock copolymer poly(ethylene glycol) acrylate‐co‐poly(ε‐caprolactone)‐co‐poly (ethylene glycol) acrylate (APEG‐PCL‐APEG) with two terminal double bonds was synthesized and self‐assembled into micelles. At the same time, graft copolymers, poly(l ‐glutamic acid)‐g‐hydroxyethyl methacrylate (PLGA‐g‐HEMA) with double bonds were synthesized. APEG‐PCL‐APEG micelles and PLGA‐g‐HEMA were mixed to construct micellar hydrogel via radical polymerization. The crystalline structure and hydrophobic aggregation of copolymers (APEG‐PCL‐APEG) were found to associate with PCL molecular weight. Due to the hydrophobic stress dissipation and crystalline structure of the micelles, the softness and toughness of hydrogels were promoted, exhibiting a 25% increase in ultimate strain. Moreover, the micellar hydrogels were able to load proteins with long‐term retention. In addition, under dynamic mechanical stimulation, the release of proteins could be accelerated. Besides, the micellar hydrogels also supported rabbit adipose‐derived stem cells (rASCs) growth, thus exhibiting the potential toward soft tissue engineering. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1115–1125  相似文献   

18.
Thermoplastic polyamide elastomers were obtained by polymerization of aminobenzoyl‐substituted telechelics derived from poly(tetrahydrofuran)‐diols (number‐average molecular weight: 1400 or 2000 g mol?1) with several diacid dichlorides (terephthaloyl dichloride, 4,4′‐biphenyldicarbonyl dichloride, or 2,6‐naphthalenedicarbonyl dichloride) and chlorotrimethylsilane in N,N‐dimethylacetamide at 0–20 °C. The as‐prepared polymers had melting temperatures above 190 °C and exhibited elastic properties at room temperature, as evidenced by dynamic mechanical analysis and stress–strain measurements. The polymer with 2,6‐naphthalenedicarboxamide hard segments had the widest rubbery plateau within the series, the highest extension at break, and good recovery properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1449–1460, 2004  相似文献   

19.
Well‐defined macromonomers of poly(ethylene oxide) and poly(tert‐butyl methacrylate) were obtained by anionic polymerization induced directly by the carbanion issued from 2‐methyl‐2‐oxazoline. When ethylene oxide was added to this carbanion with lithium as the counterion, a new compound able to initiate the polymerization of ε‐caprolactone in an anionically coordinated way was synthesized, and this led to well‐defined poly(ε‐caprolactone) macromonomers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2440–2447, 2005  相似文献   

20.
Poly(ε‐caprolactone)‐based segmented polyurethanes (PCLUs) were prepared from poly(ε‐caprolactone) diol, diisocyanates (DI), and 1,4‐butanediol. The DIs used were 4,4′‐diphenylmethane diisocyanate (MDI), 2,4‐toluenediisocyanate (TDI), isophorone diisocyanate (IPDI), and hexamethylene diisocyanate (HDI). Differential scanning calorimetry, small‐angle X‐ray scattering, and dynamic mechanical analysis were employed to characterize the two‐phase structures of all PCLUs. It was found that HDI‐ and MDI‐based PCLUs had higher degree of microphase separation than did IPDI‐ and TDI‐based PCLUs, which was primarily due to the crystallization of HDI‐ and MDI‐based hard‐segments. As a result, the HDI‐based PCLU exhibited the highest recovery force up to 6 MPa and slowest stress relaxation with increasing temperature. Besides, it was found that the partial damage in hard‐segment domains during the sample deformation was responsible for the incomplete shape‐recovery of PCLUs after the first deformation, but the damage did not develop during the subsequent deformation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 557–570, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号