首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 831 毫秒
1.
At DFT/B3LYP/6‐31G** theoretical level, C6H and C (n = 0, ?2, and +2), C6H and C (n = 0, ±2, ±4, and ±6), C6H (n = 0–6), as well as C6H6‐A and C6‐A (A = Be, B, N, O, Mg, Al, Si, S, and Fe) structures were investigated. Comparing NICS values of C6H and C (n = 0, ?2, and +2), we discovered that C6H, C6H were antiaromatic, and C6H6, C6, C, C had aromaticity with negative NICS values. According to research of C6H and C (n = 0, ±2, ±4, ±6), C6H (n = 0–6), we sustained that their σ and π orbit were different and the locations of electrons were difficult to confirm in ionic structures. Thus, neither 4n + 2 rule nor NICS values can precisely estimate the aromaticity of ionic structures. Besides, through WBI (NBO) research of C6H6‐A and C6‐A (A = Be, B, N, O, Mg, Al, Si, S, and Fe) structures, we found that C6H6 was easy to accept electrons, contrarily, C6 was prone to bestowing electrons. Moreover, C6H6 took the symmetrical carbon atoms form feeble interaction or bond, and C6 used all carbon atoms to impact with other atom. C6H6 generated two contrapuntal single bonds with oxygen, sulfur, and nitrogen atoms, whereas C6 molecule formed double bond with oxygen and nitrogen atoms, two conjoint single bonds with sulfur atom. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

2.
n1,3S (n = 1 ? 4) states for atomic three‐body systems are studied with the Angular Correlated Configuration Interaction method. A recently proposed angularly correlated basis set is used to construct, simultaneously and with a single diagonalization, ground and excited states wave functions which: (i) satisfy exactly Kato cusp conditions at the two‐body coalescence points; (ii) involve only linear parameters; (iii) show a fast convergency rate for the energy; and (iv) form an orthogonal set. The efficiency of the method is illustrated by the study a variety of three‐body atomic systems [m m m] with two negatively charged light particles, with diverse masses m and m, and a heavy positively charged nucleus m. The calculated ground 11S and excited n1,3S (n = 2 ? 4) state energies are compared with those given in the literature, when available. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

3.
Ab initio calculations are performed with 6–31G basis set to study the geometry and binding of the H3O, H5O, H7O, and H9O complexes. The H3O complex is also investigated with the 6–31 G* basis set and MP 2 (Moller–Plesset perturbation theory of second order).  相似文献   

4.
The geometrical parameters, vibrational frequencies, and dissociation energies for H (n = 5–8) clusters have been investigated using high level ab initio quantum mechanical techniques with large basis sets. The highest level of theory employed in this study is TZ2P CCSD(T). The C1 structure of H is predicted to be a global minimum, while the Cs structure of H is calculated to be a transition state. Harmonic vibrational frequencies are also determined at the DZP and TZ2P CCSD levels of theory. The dissociation energies, De, for H (n = 5–8) have been predicted using energy differences at each optimized geometry, and zero‐point vibrational energies (ZPVEs) are considered to compare with experimental values. The dissociation energies (Do) have been predicted to be 1.69, 1.65, 1.65, and 1.46 kcal · mol for H, H, H (C1 symmetry) and H, respectively, at the TZ2P CCSD(T) level of theory. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

5.
An algorithm for evaluation of two‐center, three‐electron integrals with the correlation factors of the type rr and rrr as well as four‐electron integrals with the correlation factors rrr and rrr in the Slater basis is presented. This problem has been solved here in elliptical coordinates, using the generalized and modified form of the Neumann expansion of the interelectronic distance function r for k ≥ ?1. Some numerical results are also included. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

6.
An ab initio theoretical investigation on the geometrical and electronic structures and photoelectron spectroscopies (PES) of BAun?/0 (n = 1–4) auroboranes has been performed in this work. Density functional theory and coupled cluster method (CCSD(T)) calculations indicate that BAu (n = 1–4) clusters with n‐Au terminals possess similar geometrical structures and bonding patterns with the corresponding boron hydrides BH. The PES spectra of BAu (n = 1–4) anions have been simulated computationally to facilitate their future experimental characterizations. In this series, the Td BAu anion appears to be unique and particularly interesting: it possesses a perfect tetrahedral geometry and has the highest vertical electron detachment energy (VDE = 3.69 eV), largest HOMO‐LUMO gap (ΔEgap = 3.0 eV), and the highest first excitation energy (Eex = 2.18 eV). The possibility to use the tetrahedral BAu unit as the building block of Li+[BAu4]? ion‐pair and other [BAu4]?‐containing inorganic solids is discussed. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

7.
A simplified analysis is presented for the evaluation of the three‐electron one‐center integrals of the form ∫rrrrrred r 1d r 2d r 3, for the cases i, j, k, ≥−2, l=−2, m≥−1, n≥−1. These integrals arise in the calculation of lower bounds for energy levels and certain relativistic corrections to the energy when Hylleraas‐type basis sets are employed. Convergence accelerator techniques are employed to obtain a reasonable number of digits of precision, without excessive CPU requirements. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 93–99, 1999  相似文献   

8.
Geometric structures, electronic properties, and stabilities of small Zrn and Zr (n = 2–10) clusters have been investigated using density functional theory with effective core potential LanL2DZ basis set. For both neutral and charged systems, several isomers and different multiplicities were studied to determine the lowest energy structures. Many most stable states with high symmetry were found for small Zrn clusters. The most stable structures and symmetries of Zr clusters are the same as the neutral ones except n = 4 and 7. We found that the clusters with n > 3 possess highly compact structures. The clusters are inclined to form the caged‐liked geometry containing pentagonal structures for n > 8, which is in favor of energy. From the formation energy and second‐order energy difference, we obtained that 2‐, 5‐, 7‐atoms of neutral and 4‐, 7‐atoms cationic clusters are the magic numbers. Furthermore, the highest occupied molecular orbital‐lowest unoccupied molecular orbital gaps display that the Zr3, Zr6, Zr, and Zr are more stable in chemical stability. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

9.
Understanding the maximum bonding ability is very important with the potential both to design new compounds and to broaden chemists' imagination. While the coordination ability of the late transition metals has been richly understood, that of scandium is very poor. In this work, a detailed computational study on the equilibrium geometries, stability and vibrational frequencies of a series of Sc(CO)n (n = 1–7), Sc(CO) and Sc(CO) is reported using density functional theory functionals and the coupled cluster (single‐point) method with 6‐311+G(3df) basis set. It was shown that the obtained sequential and average CO binding energies of Sc(CO)n (n = 4–7), Sc(CO) and Sc(CO) are comparable to those of the experimentally known species, i.e., smaller Sc‐carbonyls (n ≤3) and the analog Ti(CO)7+. Thus, the studied high scandium carbonyls could all be experimentally accessible. In addition, the studied Sc(CO)n generally favor the low‐spin ground state (doublet) structures except ScCO and Sc(CO)3 that are in the quartet states. The previously uncertain spectrum bands were assigned to Sc(CO)4 and Sc(CO)5 in this work. In all, the appreciable stability suggested that the last 18‐electron first‐row transition metal carbonyls, that is, Sc(CO) and Sc(CO), could be accessible in experiment. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
A density functional theory investigation on the geometrical and electronic properties of B4S (B2(BS)) and B5S (B(BS)) clusters has been performed in this work. Both the doublet B2(BS) ([S?B? BB? B?S]?) (D∞h, 2Πu) and the singlet B2(BS) ([S?B? B?B? B?S]2?) (D∞h, 1Σ) proved to have perfect linear ground‐state structures containing a multiply bonded BB core (BB or B?B) terminated with two BS groups, while Td B(BS) turned out to possess a perfect B? tetrahedral center directly corrected to four BS groups, similar to the corresponding boron hydride molecules of D∞h B2H, D∞h B2H, and Td BH, respectively. B4S2 and B5S4 neutrals, however, appeared to be much different: they favor a planar fan‐shaped C2v B4S2 (a di‐S‐bridged B4 rhombus) and a planar kite‐like C2v B5S4 (a di‐S‐bridged B3 triangle bonded to two BS groups), respectively. One‐electron detachment energies and symmetrical stretching vibrational frequencies are calculated for D∞h B2(BS) and Td B(BS) monoanions to facilitate their future characterizations. Neutral salts of B2(BS)2Li2 with an elusive B?B triple bond and B(BS)4Li containing a tetrahedral B? center are predicted possible to be targeted in experiments. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

11.
Multiconfiguration (MC ) SCF calculations are reported for CO2 for bond angles between 60° and 180°. The ground state configuration is found to be …?5a4bba for small bending angles and …?6a3bba for large bending angles, the change in ground state character occurring at a bond angle of about 100°. The force constant for bending obtained from the MC –SCF function is about 8.0% lower than the corresponding SCF value, and in considerably better agreement with experiment.  相似文献   

12.
Using the algebraic expressions of the projection operators for the group chain O ? C, concise algebraic expressions of the Clebsch–Gordon (CG) coefficients are derived in the group chain O ? C for both single‐valued and double‐valued representations. The simplicity of the expressions is that they are merely functions of the quantum numbers of the group chain O ? C. The symmetry of the CG coefficients is also derived. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

13.
We propose that complexation of all metal antiaromatic Al4Li with C2H4 may lead to stable C2H4Al4Li species [II(b)]. Complexation leads to the electron transfer from Al4Li moiety to C2H4 and development of aromatic character in the Al4 ring. Our proposed compound C2H4Al4Li [II(b)] is very similar to the existing organic compound bicyclo[2.2.0]hex‐2‐ene [I(b)]. The complex C2H4Al4Li [II(b)] can be imagined as an analogue of bicyclo[2.2.0]hex‐2‐ene [I(b)] achieved by a simple replacement of C4H4 in the later with π‐isoelectronic Al4Li moiety in the former. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

14.
We investigated various isomers of B6, B, and B clusters with ab initio [Hartree–Fock (HF), MP2)] and density functional theory (DFT) methods. Ten B6 isomers, 6 B isomers, and 6 B isomers are determined to be local minima on their potential energy hypersurfaces by the HF, B3LYP, B3PW91, and MP2 methods. Fourteen of these structures are first reported. The most stable neutral B6 cluster is the capped pentagonal pyramid (C5v), in agreement with the results reported previously. Hexagon B (C2h) isomer and fan‐shaped B (C2v) isomer are found to be the most stable on the cationic and anionic energy hypersurfaces, respectively. Natural bond orbital analysis suggests that there are three‐centered bonds in the most stable B6 neutral and ionic clusters. The multicentered bonds are responsible for the special stability of the lowest‐energy isomer. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 269–278, 2003  相似文献   

15.
In this paper, the efficient evaluation of the atomic integrals I =∫rrrrrrer1?βr2?γr3dτ with one or two factors r is described. These integrals are necessary for a lower-bound calculation for Li-like systems using the method of variance minimization or Temple's formula. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
A series of high‐spin clusters containing Li, H, and Be in which the valence shell molecular orbitals (MOs) are occupied by a single electron has been characterized using ab initio and density functional theory (DFT) calculations. A first type (5Li2, n+1LiHn+ (n = 2–5), 8Li2H) possesses only one electron pair in the lowest MO, with bond energies of ~3 kcal/mol. In a second type, all the MOs are singly occupied, which results in highly excited species that nevertheless constitute a marked minimum on their potential energy surface (PES). Thus, it is possible to design a larger panel of structures (8LiBe, 7Li2, 8Li, 4LiH+, 6BeH, n+3LiH (n = 3, 4), n+2LiH (n = 4–6), 8Li2H, 9Li2H, 22Li3Be3 and 22Li6H), single‐electron equivalent to doublet “classical” molecules ranging from CO to C6H6. The geometrical structure is studied in relation to the valence shell single‐electron repulsion (VSEPR) theory and the electron localization function (ELF) is analyzed, revealing a striking similarity with the corresponding structure having paired electrons. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

17.
MS-Xα and SCCEH calculations on the Ag2+ complexes AgF and AgCl (displaying an elongated D4h symmetry) have been carried out for a better understanding of their experimental optical and EPR properties. As salient features, the present work supports that the unpaired electron in AgCl spends a little more time on ligands than on Ag2+, in agreement with the previous analysis of EPR and optical data for KCl:Ag2+. Furthermore, the five experimental optical transitions observed in that case are reasonably assigned. The first transition (observed at 12,500 cm?1) is assigned to a jump involving the 5a1g orbital built mainly (∽70%) from 3p orbitals of axial ligands, a fact that reflects the distinct level scheme for AgCl when compared to that for more ionic complexes. Calculations on AgF and AgF performed as a function of the equatorial Ag2+ –F? distance led to a reasonable understanding of experimental gyromagnetic and superhyperfine tensors displayed by Ag2+ in fluorides. The different relative decrease undergone by g‖– go (8%) and g ? – go (28%) on passing from CsCdF3:Ag2+ to RbCdF3:Ag2+ is shown to be consistent with the formation of AgF and AgF complexes, respectively, related to the different substitutional position of Ag2+ in such lattices. The decrement of about 8.5% experienced by both g‖ – go and g? – go values on going from CsCdF3:Ag2+ to NaF:Ag2+ is pointed out to reflect the different electrostatic potential (exerted by the rest of the lattice upon the complex) seen by AgF embedded in NaCl or perovskite-type lattices. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Geometries and electronic structures of W4 and W clusters were studied by use of density functional methods B3LYP, B3P86, B3PW91, BHLYP, BLYP, and MPW1PW91. The calculated results indicate that the three‐dimensional structure of singlet state with either D2d symmetry (B3LYP, B3P86, B3PW91, BLYP, and MPW1PW91) or C2v symmetry (BHLYP) is the ground state for the W4 cluster. For the W cluster, the doublet state is preferred, and the most stable structure is also 3D with either D2d symmetry (B3LYP, B3PW91, BHLYP, BLYP) or C2v symmetry (B3P86 and MPW1PW91). The calculated electron affinity at B3P86 gives the best performance compared with experiment. For the dissociation channel, W + W3 is suggested to be the possible route for the W4 cluster. For the W cluster, W + W is the most likely route for dissociation, in agreement with experiment. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

19.
The hydrogenated silicon clusters structures, electron affinities, and dissociation energies of the Si6Hn/Si6H (n = 3?14) species have been systematically investigated by means of three density functional theory (DFT) methods. The basis set used in this work is of double‐ζ plus polarization quality with additional diffuse s‐ and p‐type functions, denoted DZP++. The geometries are fully optimized with each DFT method independently. Three different types of energy separations presented in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The first Si? H dissociation energies De (Si6Hn→ Si6Hn?1+H) for the neutral Si6Hn and De (Si6H→Si6H+H) for the anionic Si6H species have also been reported. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

20.
A quasiclassical trajectory surface hopping method has been used to study H(v) + H2 → H + H for v = 0, 3, 7, 10, 13, and 17 with an emphasis on determining the H internal energy and angular momentum distributions for high v. For v = 13 and 17, significant cross sections are found for producing H at energies above its dissociation energy. An average metastable H lifetime of 11.5 ps for v = 13 and 4.7 ps for v = 17 is found, but there is also a much longer lived component to the lifetime distributions that is more important for v = 13 than for v = 17. Some of the longer lived metastables correspond to high angular momentum orbiting states of H, but other sources of metastability are also present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号