首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The reversible addition–fragmentation chain transfer (RAFT) polymerizations of 2‐naphthyl acrylate (2NA) initiated by 2,2′‐azobisisobutyronitrile were investigated with 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN) as a RAFT agent at various temperatures in a benzene solution. The results of the polymerizations showed that 2NA could be polymerized in a controlled way by RAFT polymerization with CPDN as a RAFT agent; the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with the monomer conversion. The polydispersities of the polymer were relatively low up to high conversions in all cases. The chain‐extension reactions of poly(2‐naphthyl acrylate) (P2NA) with methyl methacrylate and styrene successfully yielded poly(2‐naphthyl acrylate)‐b‐poly(methyl methacrylate) and poly(2‐naphthyl acrylate)‐b‐polystyrene block polymers, respectively, with narrow polydispersities. The P2NA obtained by RAFT polymerization had a strong ultraviolet absorption at 270 nm, and the molecular weights had no apparent effect on the ultraviolet absorption intensities; however, the fluorescence intensity of P2NA increased as the molecular weight increased and was higher than that of 2NA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2632–2642, 2005  相似文献   

2.
Three controlled/living polymerization processes, namely atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP) and iniferter polymerization, and photoinduced radical coupling reaction were combined for the preparation of ABCBD‐type H‐shaped complex copolymer. First, α‐benzophenone functional polystyrene (BP‐PS) and poly(methyl methacrylate) (BP‐PMMA) were prepared independently by ATRP. The resulting polymers were irradiated to form ketyl radicals by hydrogen abstraction of the excited benzophenone moieties present at each chain end. Coupling of these radicals resulted in the formation of polystyrene‐b‐poly(methyl methacrylate) (PS‐b‐PMMA) with benzpinacole structure at the junction point possessing both hydroxyl and iniferter functionalities. ROP of ε‐caprolactone (CL) by using PS‐b‐PMMA as bifunctional initiator, in the presence of stannous octoate yielded the corresponding tetrablock copolymer, PCL‐PS‐PMMA‐PCL. Finally, the polymerization of tert‐butyl acrylate (tBA) via iniferter process gave the targeted H‐shaped block copolymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4601–4607  相似文献   

3.
N‐Bromosuccinimide (NBS) was used as the initiator in the atom transfer radical polymerizations of styrene (St) and methyl methacrylate (MMA). The NBS/CuBr/bipyridine (bpy) system shows good controllability for both polymerizations and yields polymers with polydispersity indexes ranging from 1.18 to 1.25 for St and 1.14 to 1.41 for MMA, depending on the conditions used. The end‐group analysis of poly(MMA) and polystyrene indicated the polymerization is initiated by the succinimidyl radicals formed from the redox reaction of NBS with CuBr/bpy. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5811–5816, 2004  相似文献   

4.
The atom transfer radical polymerization of styrene and methyl methacrylate with FeCl2/iminodiacetic acid as the catalyst system in bulk was successfully implemented at 70 and 110 °C, respectively. The polymerization was controlled: the molecular weight of the resultant polymer was close to the calculated value, and the molecular weight distribution was relatively narrow (weight‐average molecular weight/number‐average molecular weight ∼ 1.5). Block copolymers of polystyrene‐b‐poly(methyl methacrylate) and poly(methyl methacrylate)‐b‐poly(methyl acrylate) were successfully synthesized, confirming the living nature of the polymerization. A small amount of water added to the reaction system increased the reaction rate and did not affect the living nature of the polymerization system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4308–4314, 2000  相似文献   

5.
Optically active homopolymers and copolymers, bearing chiral units at the side chain and end chain, were prepared via atom transfer radical polymerization (ATRP) techniques. The well‐defined optically active polymers were obtained via the ATRP of pregnenolone methacrylate (PR‐MA), β‐cholestanol acrylate (CH‐A), and 20‐(hydroxymethyl)‐pregna‐1,4‐dien‐3‐one acrylate (HPD‐A) with ethyl 2‐bromopropionate as the initiator and CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as the catalytic system. The experimental results showed that the polymerizations of PR‐MA, CH‐A, and HPD‐A proceeded in a living fashion, providing pendent chiral group polymers with low molecular weight distributions and predetermined molecular weights that increased linearly with the monomer conversion. Furthermore, the copolymers poly(pregnenolone methacrylate)‐b‐poly[(dimethylamino)ethyl methacrylate] and poly(pregnenolone methacrylate‐co‐methyl methacrylate) were synthesized and characterized with 1H NMR, transmission electron microscopy, and polarimetric analysis. In addition, when optically active initiators estrone 2‐bromopropionate and 20‐(hydroxymethyl)‐pregna‐1,4‐dien‐3‐one 2‐bromopropionate were used for ATRPs of methyl methacrylate and styrene, terminal optically active poly(methyl methacrylate) and polystyrene were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1502–1513, 2006  相似文献   

6.
Heteroarm H‐shaped terpolymers, (polystyrene)(poly(methyl methacrylate))‐ poly(tert‐butyl acrylate)‐(polystyrene)(poly(methyl methacrylate)), (PS)(PMMA)‐PtBA‐(PMMA)(PS), and, (PS)(PMMA)‐poly(ethylene glycol)(PEG)‐(PMMA)(PS), through click reaction strategy between PS‐PMMA copolymer (as side chains) with an alkyne functional group at the junction point and diazide end‐functionalized PtBA or PEG (as a main chain). PS‐PMMA with alkyne functional group was prepared by sequential living radical polymerizations such as the nitroxide mediated (NMP) and the metal mediated‐living radical polymerization (ATRP) routes. The obtained H‐shaped polymers were characterized by using 1H‐NMR, GPC, DSC, and AFM measurements. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1055–1065, 2007  相似文献   

7.
2‐Phenyl‐2‐[(2,2,6,6‐tetramethylpiperidino)oxy] ethyl 2‐bromopropanoate was successfully used as an initiator in consecutive living radical polymerization routes, such as metal‐catalyzed living radical polymerization and nitroxide‐mediated free‐radical polymerization, to produce various types of acrylonitrile‐containing polymers, such as styrene–acrylonitrile, polystyrene‐b‐styrene–acrylonitrile, polystyrene‐b‐poly(n‐butyl acrylate)‐b‐polyacrylonitrile, and polystyrene‐b‐polyacrylonitrile. The kinetic data were obtained for the metal‐catalyzed living radical polymerization of styrene–acrylonitrile. All the obtained polymers were characterized with 1H NMR, gel permeation chromatography, and differential scanning calorimetry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3374–3381, 2006  相似文献   

8.
A novel trifunctional iniferter with photoinduced and thermal chemical dissociation functional groups in one molecule, diethyl 2,3‐dicyano‐2,3‐di(pN,N‐diethyldithiocarbamylmethyl)phenylsuccinate (DDDCS), was successfully synthesized. The bulk polymerizations of styrene and methyl methacrylate initiated by DDDCS under UV‐light irradiation and heating, respectively, were studied. The polymerizations proceeded via a living polymerization process in both cases; that is, the conversion and molecular weight of the resulting polymer increased linearly with increased reaction time. The resulting polymers, containing α‐ and ω‐N,N‐diethyldithiocarbamyl end groups, served as macroiniferters for further block copolymerization. Electron paramagnetic resonance studies showed that DDDCS initiated as a photoiniferter under UV‐light irradiation by reversible C S‐bond dissociation and as a thermal iniferter under heating by reversible hexasubstituted C C‐bond dissociation. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2115–2120, 2000  相似文献   

9.
Polymeric microspheres were prepared from a Merrifield resin via nitroxide‐mediated radical polymerization. Polystyrene, poly(acetoxystyrene), and poly[styrene‐b‐(methyl methacrylate‐co‐styrene)], poly(acetoxystyrene‐b‐styrene), and poly(styrene‐co‐2‐hydroxyethyl methacrylate) copolymers were demonstrated to graft onto 2,2,6,6‐tetramethyl‐1‐piperidinyloxy nitroxide bound Merrifield resins. The polymerization control was enhanced both on the surface and in solution by the addition of sacrificial nitroxide. The significant increase in the particle diameter (more than a fivefold volume increase for polystyrene brushes) showed that polymer growth was not only on the surface but also within the particles, and this diameter increase could be adjusted through changes in the molecular weight of the polymers. The microspheres were characterized by elemental analysis, IR spectroscopy, particle size analysis, and optical microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2145–2154, 2005  相似文献   

10.
A series of new reversible addition–fragmentation chain transfer (RAFT) agents with cyanobenzyl R groups were synthesized. In comparison with other dithioester RAFT agents, these new RAFT agents were odorless or low‐odor, and this made them much easier to handle. The kinetics of methyl methacrylate radical polymerizations mediated by these RAFT agents were investigated. The polymerizations proceeded in a controlled way, the first‐order kinetics evolved in a linear fashion with time, the molecular weights increased linearly with the conversions, and the polydispersities were very narrow (~1.1). A poly[(methyl methacrylate)‐block‐polystyrene] block copolymer was prepared (number‐average molecular weight = 42,600, polydispersity index = 1.21) from a poly(methyl methacrylate) macro‐RAFT agent. These new RAFT agents also showed excellent control over the radical polymerization of styrenics and acrylates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1535–1543, 2005  相似文献   

11.
The polymers poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate] (PDMDMA) and four‐armed PDMDMA with well‐defined structures were prepared by the polymerization of (2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate (DMDMA) in the presence of an atom transfer radical polymerization (ATRP) initiator system. The successive hydrolyses of the polymers obtained produced the corresponding water‐soluble polymers poly(2,3‐dihydroxypropyl acrylate) (PDHPA) and four‐armed PDHPA. The controllable features for the ATRP of DMDMA were studied with kinetic measurements, gel permeation chromatography (GPC), and NMR data. With the macroinitiators PDMDMA–Br and four‐armed PDMDMA–Br in combination with CuBr and 2,2′‐bipyridine, the block polymerizations of methyl acrylate (MA) with PDMDMA were carried out to afford the AB diblock copolymer PDMDMA‐b‐MA and the four‐armed block copolymer S{poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate]‐block‐poly(methyl acrylate)}4, respectively. The block copolymers were hydrolyzed in an acidic aqueous solution, and the amphiphilic diblock and four‐armed block copolymers poly(2,3‐dihydroxypropyl acrylate)‐block‐poly(methyl acrylate) were prepared successfully. The structures of these block copolymers were verified with NMR and GPC measurements. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3062–3072, 2001  相似文献   

12.
Two novel multifunctional initiators for atom transfer radical polymerization (ATRP) were synthesized by derivatization of tetraethylresorcinarene. The derivatization induced a change in the conformation of the resorcinarene ring, which was confirmed by NMR spectroscopy. The initiators were used in ATRP of tert‐butyl acrylate and methyl methacrylate, producing star polymers with controlled molar masses and low polydispersities. Instead of the expected star polymers with eight arms, polymers with four arms were obtained. Conformational studies on the initiators by rotating‐frame nuclear Overhauser and exchange spectroscopy NMR and molecular modeling suggested that of eight initiator functional groups on tetraethylresorcinarene, four are too close to each other to be able to initiate the chain growth. Starlike poly(tert‐butyl acrylate) macroinitiators were used further in the block copolymerization of methyl methacrylate. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4189–4201, 2004  相似文献   

13.
Structurally robust block copolymer templates with feature sizes of approximately 10 nm were prepared from functionalized poly(methyl methacrylate)‐b‐polystyrene block copolymers. By the inclusion of benzocyclobutene crosslinking groups in the polystyrene block, the covalent stabilization of thin films to both thermal treatment and solvent exposure became possible. In addition, the crosslinking of the poly(styrene‐benzocyclobutene) domains at 220 °C, followed by the removal of poly(methyl methacrylate), provided a robust, crosslinked nanostructure with greater processing and fabrication potential. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1028–1037, 2005  相似文献   

14.
Multifunctional initiators for atom transfer radical polymerization (ATRP) are prepared by converting ditrimethylolpropane with four hydroxyl groups, dipentaerythritol with six hydroxyl groups, and poly(3‐ethyl‐3‐hydroxymethyl‐oxetane) with ~11 hydroxyl groups to the corresponding 2‐bromoisobutyrates or 2‐bromopropionates as obtained by reaction with acid bromides. Star polystyrene (PS) is produced by using these macroinitiators and neat styrene in a controlled manner by ATRP at 110 °C, employing the catalytic system CuBr and bipyridine. Mn up to 51,000 associated with narrow molecular weight distributions (PDI < 1.1) are obtained with conversions up to 32%. Hydrolysis of the star‐PS leads to linear chains having the expected Mn values. The star‐PS polymers based on dipentaerythritol degrade thermally in nitrogen in a two‐step process in which the first low‐temperature step involves scission of the ester linkages and the second step corresponds to the normal PS degradation. Star poly(methyl acrylates) with various cores are likewise prepared in a controlled manner by ATRP of methyl acrylate in bulk and in solution at 60–80 °C with the 1,1,4,7,7‐pentamethyldiethylene triamine ligand. Under these conditions, higher conversions were possible still maintaining low PDI signaling controlled star growth. Multiarm stars of poly(n‐butyl acrylate) and poly(n‐hexyl acrylate) with controlled characteristics have also been prepared. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3748–3759, 2005  相似文献   

15.
The atom transfer radical polymerization of cyclohexyl methacrylate (CHMA) is reported. Controlled polymerizations were performed with the CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine catalytic system with ethyl 2‐bromoisobutyrate as the initiator in bulk and different solvents (25 vol %) at 40 °C. The polymerization of CHMA in bulk resulted in a controlled polymerization, although the concentration of active species was relatively elevated. The addition of a solvent was necessary to reduce the polymerization rate, which was dependent on the dipole moment. Well‐controlled polymers were obtained in toluene, diphenyl ether, and benzonitrile solutions. Poly(cyclohexyl methacrylate) as a macroinitiator was used to synthesize the poly(cyclohexyl methacrylate)‐b‐poly(tert‐butyl methacrylate) block copolymer, which allowed a demonstration of its living character. In addition, two difunctional initiators, 1,4‐bis(bromoisobutyryloxy) benzene and 1,2‐bis(bromoisobutyryloxy) ethane, were used to initiate the atom transfer radical polymerization of CHMA. The experimental molecular weights of the obtained polymers were very close to the theoretical ones. These, along with the relative narrow molecular weight distributions, indicated that the polymerization was living and controlled. For confirmation, two different poly(tert‐butyl methacrylate)‐b‐poly(cyclohexyl methacrylate)‐b‐poly(tert‐butyl methacrylate) triblock copolymers were also synthesized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 71–77, 2005  相似文献   

16.
The synthesis of block copolymers consisting of a polyethylene segment and either a poly(meth)acrylate or polystyrene segment was accomplished through the combination of postmetallocene-mediated ethylene polymerization and subsequent atom transfer radical polymerization. A vinyl-terminated polyethylene (number-average molecular weight = 1800, weight-average molecular weight/number-average molecular weight =1.70) was synthesized by the polymerization of ethylene with a phenoxyimine zirconium complex as a catalyst activated with methylalumoxane (MAO). This polyethylene was efficiently converted into an atom transfer radical polymerization macroinitiator by the addition of α-bromoisobutyric acid to the vinyl chain end, and the polyethylene macroinitiator was used for the atom transfer radical polymerization of n-butyl acrylate, methyl methacrylate, or styrene; this resulted in defined polyethylene-b-poly(n-butyl acrylate), polyethylene-b-poly(methyl methacrylate), and polyethylene-b-polystyrene block copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 496–504, 2004  相似文献   

17.
A series of polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy) styrene)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPS‐g‐PMMA)) and polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy)ethyl acrylate)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPEA‐g‐PMMA)) as new coil‐comb block copolymers (CCBCPs) were synthesized by atom transfer radical polymerization (ATRP). The linear diblock copolymer polystyrene‐b‐poly(4‐acetoxystyrene) and polystyrene‐b‐poly(2‐(trimethylsilyloxy)ethyl acrylate) PS‐b‐P(HEA‐TMS) were obtained by combining ATRP and activators regenerated by electron transfer (ARGET) ATRP. Secondary bromide‐initiating sites for ATRP were introduced by liberation of hydroxyl groups via deprotection and subsequent esterification reaction with 2‐bromopropionyl bromide. Grafting of PMMA onto either the PBPS block or the PBPEA block via ATRP yielded the desired PS‐b‐(PBPS‐g‐PMMA) or PS‐b‐(PBPEA‐g‐PMMA). 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography data indicated the target CCBCPs were successfully synthesized. Preliminary investigation on selected CCBCPs suggests that they can form ordered nanostructures via microphase separation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2971–2983  相似文献   

18.
The atom transfer radical polymerization of octadecyl acrylate (ODA) has been investigated and optimized to produce polymers with predetermined molecular weights and narrow polydispersities (<1.2). The poor solubility of the catalytic system formed with conventional ligands such as the N‐(n‐propyl)‐2‐pyridylmethanimine and 2,2′‐bipyridine with Cu(I)Br in nonpolar reaction conditions gave poor control over molecular weight characteristics in ODA polymerizations. The use of N‐(n‐octyl)‐2‐pyridylmethanimine in combination with Cu(I)Br yielded a more soluble catalyst that improved control over the polymerization. The products from the polymerizations were further improved when an initiator, octadecyl 2‐bromo‐2‐methyl‐propanoate, similar in structure to the monomer, was used. Together, these modifications produced polymerizations that showed true controlled character as well as products with predetermined molecular weights and narrow polydispersities. Diblock copolymers of PODA were prepared with methyl methacrylate (MMA) and olig(oethylene glycol) methyl ether methacrylate (OEGMA). The PODA‐block‐POEGMA copolymers are the first examples of all comblike amphiphilic block copolymers. One of PODA‐block‐POEGMA copolymer samples has been shown to self‐assemble as micelles in a dilute aqueous solution. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1129–1143, 2005  相似文献   

19.
A series of poly(N‐(ω′‐alkylcarbazoly) methacrylates) tris(bipyridine) Ru‐centered bifunctional polymers with good filming, thermal, and solubility properties were synthesized and characterized. Atom transfer radical polymerization (ATRP) of N‐(ω′‐alkylcarbazoly) methacrylates in solution was used, where Ru complexes with one and three initiating sites acted as metalloinitiators with NiBr2(PPh3)2 as a catalyst. ATRP reaction conditions with respect to polymer molecular weights and polydispersity indices (PDI) of the target bifunctional polymers were examined. Electronic absorption and emission spectra of the resultant functional polymers provided evidence of chromophore presence within a single polymeric chain. The thermal properties of all polymers were also investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and these analyses have indicated that these polymers possess higher thermal stabilities than poly(methyl methacrylate) (PMMA) obtained via free radical polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6057–6072, 2005  相似文献   

20.
Anionic polymerization techniques have been implemented successfully in a commercial automated synthesizer. The main problems for a successful adaptation of the experimental technique in the automated synthesizer are addressed, as well as some simple potential applications, such as the anionic polymerization of styrene, isoprene, and methyl methacrylate. The obtained results were reproducible and in concordance with literature knowledge. The apparent rate constant of the anionic polymerization of styrene in cyclohexane initiated by sec‐butyllithium could be determined at two different concentrations of the monomer and initiator in a temperature range of 10–60 °C. All the synthesis and characterization experiments of the polymers were performed within a short time period. Moreover, the syntheses of poly(styrene‐b‐isoprene) and poly(styrene‐b‐methyl methacrylate) block copolymers were also successfully carried out within the automated synthesizer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4151–4160, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号