首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper we consider low-rank semidefinite programming (LRSDP) relaxations of combinatorial quadratic problems that are equivalent to the maxcut problem. Using the Gramian representation of a positive semidefinite matrix, the LRSDP problem can be formulated as the nonconvex nonlinear programming problem of minimizing a quadratic function with quadratic equality constraints. For the solution of this problem we propose a continuously differentiable exact merit function that exploits the special structure of the constraints and we use this function to define an efficient and globally convergent algorithm. Finally, we test our code on an extended set of instances of the maxcut problem and we report comparisons with other existing codes.  相似文献   

2.
任燕  陈伟 《运筹学学报》2010,14(1):66-76
本文主要讨论了二次整数规划问题的线性化方法.在目标函数为二次函数的情况下,我们讨论了带有二次约束的整数规划问题的线性化方法,并将文献中对二次0-1问题的研究拓展为对带有盒约束的二次整数规划问题的研究.最终将带有盒约束的二次整数规划问题转化为线性混合本文主要讨论了二次整数规划问题的线性化方法.在目标函数为二次函数的情况下,我们讨论了带有二次约束的整数规划问题的线性化方法,并将文献中对二次0-1问题的研究拓展为对带有盒约束的二次整数规划问题的研究.最终将带有盒约束的二次整数规划问题转化为线性混合0-1整数规划问题,然后利用Ilog-cplex或Excel软件中的规划求解工具进行求解,从而解决原二次整数规划.  相似文献   

3.
In this paper, we investigate the quadratic stability and quadratic stabilizability of the class of continuous-time linear systems with Markovian jumps and norm-bound uncertainties in the parameters. Under some appropriate assumptions, a necessary and sufficient condition is established for mean-square quadratic stability and mean-square quadratic stabilizability of this class of systems. The quadratic guaranteed cost control problem is also addressed via a LMI optimization problem.  相似文献   

4.
In this paper, we consider minimizing the ratio of two indefinite quadratic functions subject to two quadratic constraints. Using the extension of Charnes–Cooper transformation, we transform the problem to a homogenized quadratic problem. Then, we show that, under certain assumptions, it can be solved to global optimality using semidefinite optimization relaxation.  相似文献   

5.
本文提出具有线性等式约束多目标规划问题的一个降维算法.当目标函数全是二次或线性但至少有一个二次型时,用线性加权法转化原问题为单目标二次规划,再用降维方法转化为求解一个线性方程组.若目标函数非上述情形,首先用线性加权法将原问题转化为具有线性等式约束的非线性规划,然后,对这一非线性规划的目标函数二次逼近,构成线性等式约束二次规划序列,用降维法求解,直到满足精度要求为止.  相似文献   

6.
In this paper, we consider the problem of minimizing an indefinite quadratic function subject to a single indefinite quadratic constraint. A key difficulty with this problem is its nonconvexity. Using Lagrange duality, we show that under a mild assumption, this problem can be solved by solving a linearly constrained convex univariate minimization problem. Finally, the superior efficiency of the new approach compared to the known semidefinite relaxation and a known approach from the literature is demonstrated by solving several randomly generated test problems.  相似文献   

7.
In this paper we study a class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Strong duality holds if a redundant constraint is introduced. As an application, a new lower bound is proposed for the quadratic assignment problem.  相似文献   

8.
In this paper, we will study an indefinite stochastic linear quadratic optimal control problem, where the controlled system is described by a stochastic differential equation with delay. By introducing the relaxed compensator as a novel method, we obtain the well-posedness of this linear quadratic problem for indefinite case. And then, we discuss the uniqueness and existence of the solutions for a kind of anticipated forward–backward stochastic differential delayed equations. Based on this, we derive the solvability of the corresponding stochastic Hamiltonian systems, and give the explicit representation of the optimal control for the linear quadratic problem with delay in an open-loop form. The theoretical results are validated as well on the control problems of engineering and economics under indefinite condition.  相似文献   

9.
In this paper we examine non-convex quadratic optimization problems over a quadratic constraint under unknown but bounded interval perturbation of problem data in the constraint and develop criteria for characterizing robust (i.e. uncertainty-immunized) global solutions of classes of non-convex quadratic problems. Firstly, we derive robust solvability results for quadratic inequality systems under parameter uncertainty. Consequently, we obtain characterizations of robust solutions for uncertain homogeneous quadratic problems, including uncertain concave quadratic minimization problems and weighted least squares. Using homogenization, we also derive characterizations of robust solutions for non-homogeneous quadratic problems.  相似文献   

10.
In this paper, we investigate a constrained optimization problem with a quadratic cost functional and two quadratic equality constraints. It is assumed that the cost functional is positive definite and that the constraints are both feasible and regular (but otherwise they are unrestricted quadratic functions). Thus, the existence of a global constrained minimum is assured. We develop a necessary and sufficient condition that completely characterizes the global minimum cost. Such a condition is of essential importance in iterative numerical methods for solving the constrained minimization problem, because it readily distinguishes between local minima and global minima and thus provides a stopping criterion for the computation. The result is similar to one obtained previously by the authors. In the previous result, we gave a characterization of the global minimum of a constrained quadratic minimization problem in which the cost functional was an arbitrary quadratic functional (as opposed to positive-definite here) and the constraints were at least positive-semidefinite quadratic functions (as opposed to essentially unrestricted here).  相似文献   

11.
The problem of minimizing a (non-convex) quadratic function over the simplex (the standard quadratic optimization problem) has an exact convex reformulation as a copositive programming problem. In this paper we show how to approximate the optimal solution by approximating the cone of copositive matrices via systems of linear inequalities, and, more refined, linear matrix inequalities (LMI's). In particular, we show that our approach leads to a polynomial-time approximation scheme for the standard quadratic optimzation problem. This is an improvement on the previous complexity result by Nesterov who showed that a 2/3-approximation is always possible. Numerical examples from various applications are provided to illustrate our approach.  相似文献   

12.
In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, we have proved that the solution of the quadratic spline collocation for the nonlinear problem can be written as a series expansions in integer powers of the mesh-size parameter. This gives us a construction method for using Richardson's extrapolation. When we have a set of approximate solution with different mesh-size parameter a solution with high accuracy can he obtained by Richardson's extrapolation.  相似文献   

13.
主要讨论基于开关控制的线性奇异系统的二次状态反馈镇定问题.利用二次反馈镇定的概念,给出了线性奇异系统基于异步开关控制的二次状态反馈镇定问题可解的两个充分条件.进一步,对于带有范数有界的不确定项的奇异线性系统,给出了其可以基于异步开关控制的二次状态反馈鲁棒镇定的可解性条件.  相似文献   

14.
In this paper, we present a smoothing sequential quadratic programming to compute a solution of a quadratic convex bilevel programming problem. We use the Karush-Kuhn-Tucker optimality conditions of the lower level problem to obtain a nonsmooth optimization problem known to be a mathematical program with equilibrium constraints; the complementary conditions of the lower level problem are then appended to the upper level objective function with a classical penalty. These complementarity conditions are not relaxed from the constraints and they are reformulated as a system of smooth equations by mean of semismooth equations using Fisher-Burmeister functional. Then, using a quadratic sequential programming method, we solve a series of smooth, regular problems that progressively approximate the nonsmooth problem. Some preliminary computational results are reported, showing that our approach is efficient.  相似文献   

15.
We consider quadratic stochastic programs with random recourse—a class of problems which is perceived to be computationally demanding. Instead of using mainstream scenario tree-based techniques, we reduce computational complexity by restricting the space of recourse decisions to those linear and quadratic in the observations, thereby obtaining an upper bound on the original problem. To estimate the loss of accuracy of this approach, we further derive a lower bound by dualizing the original problem and solving it in linear and quadratic recourse decisions. By employing robust optimization techniques, we show that both bounding problems may be approximated by tractable conic programs.  相似文献   

16.
The problem of minimizing a quadratic form over the standard simplex is known as the standard quadratic optimization problem (SQO). It is NP-hard, and contains the maximum stable set problem in graphs as a special case. In this note, we show that the SQO problem may be reformulated as an (exponentially sized) linear program (LP). This reformulation also suggests a hierarchy of polynomial-time solvable LP’s whose optimal values converge finitely to the optimal value of the SQO problem. The hierarchies of LP relaxations from the literature do not share this finite convergence property for SQO, and we review the relevant counterexamples.  相似文献   

17.
In this study, we consider the exponential utility maximization problem in the context of a jump–diffusion model. To solve this problem, we rely on the dynamic programming principle to express the value process of this problem in terms of the solution of a quadratic BSDE with jumps. Since the quadratic BSDE1 under study is driven by both a Wiener process and a Poisson random measure having a Lévy measure with infinite mass, our main task is therefore to establish a new existence result for the specific BSDE introduced.  相似文献   

18.
We study a linear, discrete ill-posed problem, by which we mean a very ill-conditioned linear least squares problem. In particular we consider the case when one is primarily interested in computing a functional defined on the solution rather than the solution itself. In order to alleviate the ill-conditioning we require the norm of the solution to be smaller than a given constant. Thus we are lead to minimizing a linear functional subject to two quadratic constraints. We study existence and uniqueness for this problem and show that it is essentially equivalent to a least squares problem with a linear and a quadratic constraint, which is easier to handle computationally. Efficient algorithms are suggested for this problem.  相似文献   

19.
针对界约束二次规划的分枝定界法中出现的紧、松弛策略,结合聚类分析方法,给出了新的剖分边的选取原则,把球约束二次规划作为子问题,使得原问题整体最优值的上、下界能较快的达到.  相似文献   

20.
Frequency sounding of layered media is modeled by a hyperbolic problem. Within the framework of this model, we formulate an inverse problem. Applying the Laplace transform and introducing the impedance function, the latter is first reduced to the inverse boundary value problem for the Riccati equation and then to the Cauchy problem for a first-order quadratic equation. The advantage of such transformations is that the quadratic equation does not contain an unknown coefficient. For a specific class of data, it is shown that the Cauchy problem is uniquely solvable. Based on the asymptotic behavior of solutions to both the Riccati and quadratic equations, a stable reconstruction algorithm is constructed. Its feasibility is demonstrated in computational experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号