首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twelve complexes 1-12 of general category [M(ligand)(anion)(x)(water)(y)], where ligand = N,N,N',N'-tetrakis(2-hydroxypropyl/ethyl)ethylenediamine (HPEN/HEEN), anion = anions of picric acid (PIC), 3,5-dinitrobenzoic acid (DNB), 2,4-dinitrophenol (DNP), and o-nitrobenzoic acid (ONB), M = Ca(2+), Sr(2+), Ba(2+), or Na(+), x = 1 and 2, and y = 0-4, were synthesized. All of these complexes were characterized by elemental analysis, IR, (1)H and (13)C NMR, and thermal studies. X-ray crystal studies of these complexes 1-12, [Ca(HPEN)(H(2)O)(2)](PIC)(2).H(2)O (1), [Ca(HEEN)(PIC)](PIC) (2), Ba(HPEN)(PIC)(2) (3), [Na(HPEN)(PIC)](2) (4), Ca(HPEN)(H(2)O)(2)](DNB)(2).H(2)O (5),Ca(HEEN)(H(2)O)](DNB)(2).H(2)O (6), [Sr(HPEN)(H(2)O)(3)](DNB)(2) (7), [Ba(HPEN)(H(2)O)(2)](DNB)(2).H(2)O](2) (8), [[Ba(HEEN)(H(2)O)(2)](ONB)(2)](2) (9), [[Sr(HPEN)(H(2)O)(2)](DNP)(2)](2) (10), [[Ba(HPEN)(H(2)O)(2)](DNP)(2)](2) (11), and [Ca(HEEN)(DNP)](DNP) (H(2)O) (12), have been carried out at room temperature. Factors which influence the stability and the type of complex formed have been recognized as H-bonding interactions, presence/absence of solvent, nature of the anion, and nature of the cation. Both the ligands coordinate the metal ion through all the six available donor atoms. The complexes 1 and 5-11 have water molecules in the coordination sphere, and their crystal structures show that water is playing a dual character. It coordinates to the metal ion on one hand and strongly hydrogen bonds to the anion on the other. These strong hydrogen bonds stabilize the anion and decrease the cation-anion interactions by many times to an extent that the anions are completely excluded out of the coordination sphere and produce totally charge-separated complexes. In the absence of water molecules as in 2 and 3 the number of hydrogen bonds is reduced considerably. In both the complexes the anions case interact more strongly with the metal ion to give rise to a partially charge-separated 2 or tightly ion-paired 3 complex. High charge density Ca(2+) forms only monomeric complexes. It has more affinity toward stronger nucleophiles such as DNP and PIC with which it gives partially charge-separated eight-coordinated complexes. But with relatively weaker nucleophile like DNB, water replaces the anion and produces a seven coordinated totally charge-separated complex. Sr(2+) with lesser charge/radius ratio forms only charge-separated monomeric as well as dimeric complexes. Higher coordination number of Sr(2+) is achieved with coordinated water molecules which may be bridging or nonbridging in nature. All charge-separated complexes of the largest Ba(2+) are dimeric with bridging water molecules. Only one monomeric ion-paired complex was obtained with Ba(PIC)(2). Na(+) forms a unique dinuclear cryptand-like complex with HPEN behaving as a heptadentate chelating-cum-bridging ligand.  相似文献   

2.
Treatment of [[Ti(eta(5)-C(5)Me(5))(mu-NH)](3)(mu(3)-N)] with alkali-metal bis(trimethylsilyl)amido derivatives [M[N(SiMe(3))(2)]] in toluene affords edge-linked double-cube nitrido complexes [M(mu(4)-N)(mu(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]](2) (M = Li, Na, K, Rb, Cs) or corner-shared double-cube nitrido complexes [M(mu(3)-N)(mu(3)-NH)(5)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = Na, K, Rb, Cs). Analogous reactions with 1/2 equiv of alkaline-earth bis(trimethylsilyl)amido derivatives [M[N(SiMe(3))(2)](2)(thf)(2)] give corner-shared double-cube nitrido complexes [M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = Mg, Ca, Sr, Ba). If 1 equiv of the group 2 amido reagent is employed, single-cube-type derivatives [(thf)(x)[(Me(3)Si)(2)N]M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]] (M = Mg, x = 0; M = Ca, Sr, Ba, x = 1) can be isolated or identified. The tetrahydrofuran molecules are easily displaced with 4-tert-butylpyridine in toluene, affording the analogous complexes [(tBupy)[(Me(3)Si)(2)N]M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]] (M = Ca, Sr). The X-ray crystal structures of [M(mu(3)-N)(mu(3)-NH)(5)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = K, Rb, Cs) and [M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3))-N)](2)] (M = Ca, Sr) have been determined. The properties and solid-state structures of the azaheterometallocubane complexes bearing alkali and alkaline-earth metals are discussed.  相似文献   

3.
(133)Cs NMR spectroscopy was used to determine the stoichiometry and stability of the Cs(+) ion complex with dibenzo-21-crown-7 (DB21C7) in acetonitrile-dimethylsulfoxide (96.5:3.5, w/w) and nitromethane-dimethylsulfoxide (96.5:3.5, w/w) mixtures. A competitive (133)Cs NMR technique was also employed to probe the complexation of Na(+), K(+), Rb(+), Ag(+), Tl(+), NH(4)(+), Mg(2+), Ba(2+), Hg(2+), Pb(2+) and UO(2)(2+) ions with DB21C7 in the same solvent systems. All the resulting 1:1 complexes in nitromethane-dimethylsulfoxide were more stable than those in acetonitrile-dimethylsulfoxide solution. In both solvent systems, the stability of the resulting complexes was found to vary in the order Rb(+)>K(+) approximately Ba(2+)>Tl(+)>Cs(+)>NH(4)(+) approximately Pb(2+)>Ag(+)>UO(2)(2+)>Hg(2+)>Mg(2+)>Na(+).  相似文献   

4.
A series of alkali metal azide-crown ether complexes, [Li([12]crown-4)(N3)], [Na([15]crown-5)(N3)], [Na([15]crown-5)(H2O)2]N3, [K([18]crown-6)(N3)(H2O)], [Rb([18]crown-6)(N3)(H2O)], [Cs([18]crown-6)(N3)]2, and [Cs([18]crown-6)(N3)(H2O)(MeOH)], has been synthesised. In most cases, single crystals were obtained, which allowed X-ray crystal structures to be derived. The structures obtained have been compared with molecular structures computed by density functional theory (DFT) calculations. This has allowed the effects of the crystal lattice on the structures to be investigated. Also, a study of the M-N(terminal) metal-azide bond length and charge densities on the metal (M) and terminal nitrogen centre (N(terminal)) in these complexes has allowed the nature of the metal-azide bond to be probed in each case. The bonding in these complexes is believed to be predominantly ionic or ion-dipole in character, with the differences in geometries reflecting the balance between maximising the coordination number of the metal centre and minimising ligand-ligand repulsions. The structures of the crown ether complexes determined in this work show the subtle interplay of such factors. The significant role of hydrogen bonding is also demonstrated, most clearly in the structures of the K and Rb dimers, but also in the chain structure of the hydrated Cs complex.  相似文献   

5.
Compounds [Sr(dpp-bian)(thf)4] (2), [Ba(dpp-bian)(dme)2.5] (3) and [Mg(dtb-bian)(thf)2] (4) (dpp-bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene; dtb-bian = 1,2-bis[(2,5-di-tert-butylphenyl)imino]acenaphthene) were prepared by reduction of dpp-bian and dtb-bian with an excess of metallic Mg, Sr, or Ba in THF or DME. Reactions of [Mg(dpp-bian)(thf)3], 3, and 4 with diphenylacetonitrile gave keteniminates [Mg(dpp-bianH)(NCCPh2)(thf)2] (5), [Mg(dtb-bianH)(NCCPh2)(thf)2] (6), and [Ba(dpp-bianH)(NCCPh2)(dme)2] (7), respectively. The reaction of 2 with CH3C[triple chemical bond]N in THF gave [{Sr(dpp-bianH)[N(H)C(CH3)C(H)CN](thf)}2] (8). The compounds 2, 3, 5-8 were characterized by elemental analysis, and IR and NMR spectroscopy. Molecular structures of 2, 3, 7, and 8 were determined by single-crystal X-ray diffraction. In contrast to reactions of alkali-metal reagents, magnesium amides, or yttriumalkyls with alpha-H acidic nitriles, which are accompanied by an amine or an alkane elimination, the reactions of [Mg(dpp-bian)(thf)3] (1), 2, 3, and 4 with such nitriles proceeded with formation of Mg, Sr, and Ba keteniminates and simultaneous protonation of one nitrogen atom of the bian ligand. The NMR spectroscopic data obtained for complex 5 indicated that in solution the amino hydrogen atom underwent the fast (on the NMR timescale) shuttle transfer between both nitrogen atoms of the dpp-bianH ligand.  相似文献   

6.
Zhang  Y.  Li  L.-L.  Feng  S.-S.  Feng  T.  Dong  W.-K. 《Russian Journal of General Chemistry》2021,91(10):2069-2078
Russian Journal of General Chemistry - Two new phenoxo-bridged heterobimetallic [Zn(II)2M(II)] (M = Sr and Ba) salamo-based complexes, [{Zn(L)(μ2-OAc)}2Sr]·0.33CH3OH·H2O (1) and...  相似文献   

7.
We report the first solid state X-ray crystal structure for a Eu(II) chelate, [C(NH2)3]3[Eu(II)(DTPA)(H2O)].8H2O, in comparison with those for the corresponding Sr analogue, [C(NH2)3]3[Sr(DTPA)(H2O).8H2O and for [Sr(ODDA)].8H2O (DTPA5 = diethylenetriamine-N,N,N',N",N"-pentaacetate, ODDA2- =1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diacetate ). The two DTPA complexes are isostructural due to the similar ionic size and charge of Sr(2+) and Eu(2+). The redox stability of [Eu(II)(ODDA)(H2O)] and [Eu(II)(ODDM)]2- complexes has been investigated by cyclovoltammetry and UV/Vis spectrophotometry (ODDM4- =1,4,10,13-tetraoxa-7,16-diaza-cyclooctadecane-7,16-++ +dimalonate). The macrocyclic complexes are much more stable against oxidation than [Eu(II)(DTPA)(H2O)]3- (the redox potentials are E1/2 =-0.82 V, -0.92 V, and -1.35 V versus Ag/AgCl electrode for [Eu(III/II)(ODDA)(H2O)],[Eu(III/II)(ODDM)], and [Eu(III/II)(DTPA)(H2O)], respectively, compared with -0.63 V for Eu(III/II) aqua). The thermodynamic stability constants of [Eu(II)(ODDA)(H2O)], [Eu(II)(ODDM)]2-, [Sr(ODDA)(H2O)], and [Sr(ODDM)]2- were also determined by pH potentiometry. They are slightly higher for the EuII complexes than those for the corresponding Sr analogues (logK(ML)=9.85, 13.07, 8.66, and 11.34 for [Eu(II)(ODDA)(H2O)], [Eu(II)(ODDM)]2-, [Sr(ODDA)(H2O)], and [Sr(ODDM)]2-, respectively, 0.1M (CH3)4NCl). The increased thermodynamic and redox stability of the Eu(II) complex formed with ODDA as compared with the traditional ligand DTPA can be of importance when biomedical application is concerned. A variable-temperature 17O-NMR and 1H-nuclear magnetic relaxation dispersion (NMRD) study has been performed on [Eu(II)(ODDA)(H2O)] and [Eu(II)(ODDM)]2- in aqueous solution. [Eu(II)(ODDM)]2- has no inner-sphere water molecule which allowed us to use it as an outer-sphere model for [Eu(II)(ODDA)(H2O)]. The water exchange rate (k298(ex)= 0.43 x 10(9)s(-1)) is one third of that obtained for [Eu(II)(DTPA)(H2O)]3-. The variable pressure 17O-NMR study yielded a negative activation volume, deltaV (not=) = -3.9cm3mol(-1); this indicates associatively activated water exchange. This water exchange rate is in the optimal range to attain maximum proton relaxivities, which are, however, strongly limited by the fast rotation of the small molecular weight complex.  相似文献   

8.
Reactions of a Pt(II)-diimine-based metalloligand Na(2)[Pt(CN)(2)(4,4'-dcbpy)] (4,4'-H(2)dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) with alkaline-earth metal salts Mg(NO(3))(2)·6H(2)O, CaCl(2), SrCl(2)·6H(2)O, and BaBr(2)·2H(2)O in aqueous solution gave luminescent complexes formulated as [Mg(H(2)O)(5)][Pt(CN)(2)(4,4'-dcbpy)]·4H(2)O (MgPt-4·9H(2)O), {[Ca(H(2)O)(3)][Pt(CN)(2)(4,4'-dcbpy)]·3H(2)O}(∞) (CaPt-4·6H(2)O), {[Sr(H(2)O)(2)][Pt(CN)(2)(4,4'-dcbpy)]·H(2)O}(∞) (SrPt-4·3H(2)O), and {[Ba(H(2)O)(2)][Pt(CN)(2)(4,4'-dcbpy)]·3H(2)O}(∞) (BaPt-4·5H(2)O), respectively. The crystal structures of all MPt-4 complexes were determined by X-ray crystallography. In these structures, the alkaline-earth metal ions are commonly coordinated to the carboxyl groups of the [Pt(CN)(2)(4,4'-dcbpy)](2-) metalloligand. In the case of MgPt-4·9H(2)O, the Mg(II) ion is bound by five water molecules and one oxygen atom of a carboxyl group to form a neutral complex molecule [Mg(H(2)O)(5)][Pt(CN)(2)(4,4'-dcbpy)]. In contrast, the alkaline-earth metal ion and metalloligand form two-dimensional (CaPt-4·6H(2)O) and three-dimensional (SrPt-4·3H(2)O and BaPt-4·5H(2)O) coordination networks, respectively. All fully hydrated complexes exhibited a strong phosphorescence from the triplet π-π* transition state. Luminescence spectroscopy revealed that MgPt-4·9H(2)O exhibited interesting multichromic (i.e., thermo-, mechano-, and vapochromic) luminescence, whereas CaPt-4·6H(2)O showed only thermochromic luminescence. The other two complexes did not exhibit any chromic behaviour. Combination analysis of powder X-ray diffraction, thermogravimetry, and IR spectroscopy suggests that the dimensionality of the coordination network contributes considerably to both the structural flexibility and luminescence properties; that is, the low-dimensional flexible coordination network formed in MPt-4 complexes with smaller alkaline-earth metal ions enables a structural rearrangement induced by thermal and mechanical stimuli and vapour adsorption, resulting in the observed multichromic behaviour.  相似文献   

9.
Yang D  Ding Y  Wu H  Zheng W 《Inorganic chemistry》2011,50(16):7698-7706
Several of alkaline-earth-metal complexes [(η(2):η(2):μ(N):μ(N)-Li)(+)](2)[{η(2)-Me(2)Si(DippN)(2)}(2)Mg](2-) (4), [η(2)(N,N)-Me(2)Si(DippN)(2)Ca·3THF] (5), [η(2)(N,N)-Me(2)Si(DippN)(2)Sr·THF] (6), and [η(2)(N,N)-Me(2)Si(DippN)(2)Ba·4THF] (7) of a bulky bis(amido)silane ligand were readily prepared by the metathesis reaction of alkali-metal bis(amido)silane [Me(2)Si(DippNLi)(2)] (Dipp = 2,6-i-Pr(2)C(6)H(3)) and alkaline-earth-metal halides MX(2) (M = Mg, X = Br; M = Ca, Sr, Ba, X = I). Alternatively, compounds 5-7 were synthesized either by transamination of M[N(SiMe(3))(2)](2)·2THF (M = Ca, Sr, Ba) and [Me(2)Si(DippNH)(2)] or by transmetalation of Sn[N(SiMe(3))(2)](2), [Me(2)Si(DippNH)(2)], and metallic calcium, strontium, and barium in situ. The metathesis reaction of dilithium bis(amido)silane [Me(2)Si(DippNLi)(2)] and magnesium bromide in the presence of oxygen afforded, however, an unusual lithium oxo polyhedral complex {[(DippN(Me(2)Si)(2))(μ-O)(Me(2)Si)](2)(μ-Br)(2)[(μ(3)-Li)·THF](4)(μ(4)-O)(4)(μ(3)-Li)(2)} (8) with a square-basket-shaped core Li(6)Br(2)O(4) bearing a bis(aminolato)silane ligand. All complexes were characterized using (1)H, (13)C, and (7)Li NMR and IR spectroscopy, in addition to X-ray crystallography.  相似文献   

10.
The first examples of azide complexes of calcium, strontium or barium with crown ethers have been prepared and fully characterised, notably [Ba([18]crown-6)(N3)2(MeOH)], [Sr([15]crown-5)(N3)2(H2O)], [Ca([15]crown-5)(N3)2(H2O)] and [Sr([15]crown-5)(N3(NO3)]. Crystal structures reveal the presence of a variety of coordination modes for the azide groups including kappa 1-, mu-1,3- and linkages via H-bonded water molecules, in addition to azide ions. The [Ba([18]crown-6)(N3)2(MeOH)].1/3 MeOH contains dinuclear cations with three mu-1,3-NNN bridges, the first example of this type in main group chemistry. The structures obtained have been compared with molecular structures computed by density functional theory (DFT). This has allowed the effects of the crystal lattice to be investigated. A study of the M--N terminal metal-azide bond length and charge densities on the metal (M) and terminal nitrogen centre (N terminal) in these complexes has allowed the nature of the metal-azide bond to be investigated in each case. As in our earlier work on alkali metal azide-crown ether complexes, the bonding in the alkaline-earth complexes is believed to be predominantly ionic or ion-dipole in character, with the differences in geometries reflecting the balance between maximising the coordination number of the metal centre, and minimising ligand-ligand repulsions.  相似文献   

11.
The Ru(III)(edta)/H(2)O(2) system (edta(4-) = ethylenediaminetretaacetate) was found to degrade the azo-dye Orange II at remarkably high efficiency under ambient conditions. Catalytic degradation of the dye was studied by using rapid-scan spectrophotometry as a function of [H(2)O(2)], [Orange II] and pH. Spectral analyses and kinetic data point towards a catalytic pathway involving the rapid formation of [Ru(III)(edta)(OOH)](2-) followed by the immediate subsequent degradation of Orange II prior to the conversion of [Ru(III)(edta)(OOH)](2-) to [Ru(IV)(edta)(OH)](-) and [Ru(V)(edta)(O)](-)via homolysis and heterolysis of the O-O bond, respectively. The higher oxidation state Ru(IV) and Ru(V) complexes react three orders of magnitude slower with Orange II than the Ru(III)-hydroperoxo complex. In comparison to biological oxygen transfer reactions, the Ru(edta) complexes show the reactivity order Compound 0 ? Compounds I and II.  相似文献   

12.
The synthesis of the new complexes of 1-phenylacetyl-4-phenyl-3-thiosemicarbazide (H2papts) and 1-phenoxyacetyl-4-phenyl-3-thiosemicarbazide (H2Pxapts); [Ru(HL)2(H2O)2], [Rh(HL)3], [Ag(H2L)(H2O)2](NO3), trans-[UO2(HL)(bipy)(AcO)(H2O)2] (H2L = H2papts, H2pxapts; bipy = 2,2'-bipyridyl), [Ag(H2papts)(bipy)]+ and [Pd-(Hpapts)(bipy)]+ is described. Characterization of these complexes by IR, electronic and 1H-NMR spectra, conductometric titrations and thermal analysis is included. The complexes [Ru(HL)2(H2O)2] were found to be efficient catalysts for the oxidation of primary alcohols to aldehydes and acids, secondary alcohols to ketones and aryl halides to aldehydes and acids in the presence of NaIO4 as co-oxidant.  相似文献   

13.
Efficient protocols for the syntheses of well-defined, solvent-free cations of the large alkaline-earth (Ae) metals (Ca, Sr, Ba) and their smaller Zn and Mg analogues have been designed. The reaction of 2,4-di-tert-butyl-6-(morpholinomethyl)phenol ({LO(1)}H), 2-{[bis(2-methoxyethyl)amino]methyl}-4,6-di-tert-butylphenol ({LO(2)}H), 2-[(1,4,7,10-tetraoxa-13-azacyclopentadecan-13-yl)methyl]-4,6-di-tert-butylphenol ({LO(3)}H), and 2-[(1,4,7,10-tetraoxa-13-azacyclo-pentadecan-13-yl)methyl]-1,1,1,3,3,3-hexafluoropropan-2-ol ({RO(3)}H) with [H(OEt(2))(2)](+)[H(2)N{B(C(6)F(5))(3)}(2)](-) readily afforded the doubly acidic pro-ligands [{LO(1)}HH](+)[X](-) (1), [{LO(2)}HH](+)[X](-) (2), [{LO(3)}HH](+)[X](-) (3), and [{RO(3)}HH](+)[X](-) (4) ([X](-) = [H(2)N{B(C(6)F(5))(3)}(2)](-)). The addition of 2 to Ca[N(SiMe(3))(2)](2)(THF)(2) and Sr[N(SiMe(3))(2)](2)(THF)(2) yielded [{LO(2)}Ca(THF)(0.5)](+)[X](-) (5) and [{LO(2)}Sr(THF)](+)[X](-) (6), respectively. Alternatively, 5 could also be prepared upon treatment of {LO(2)}CaN(SiMe(3))(2) (7) with [H(OEt(2))(2)](+)[X](-). Complexes [{LO(3)}M](+)[X](-) (M = Zn, 8; Mg, 9; Ca, 10; Sr, 11; Ba, 12) and [{RO(3)}M](+)[X](-) (M = Zn, 13; Mg, 14; Ca, 15; Sr, 16; Ba, 17) were synthesized in high yields (70-90%) by reaction of 3 or 4 with the neutral precursors M[N(SiMe(3))(2)](2)(THF)(x) (M = Zn, Mg, x = 0; M = Ca, Sr, Ba, x = 2). All compounds were fully characterized by spectroscopic methods, and the solid-sate structures of compounds 1, 3, 7, 8, 13, 14, {15}(4)·3CD(2)Cl(2), {16}(4)·3CD(2)Cl(2), and {{17}(4)·EtOH}·3CD(2)Cl(2) were determined by X-ray diffraction crystallography. Whereas the complexes are monomeric in the case of Zn and Mg, they form bimetallic cations in the case of Ca, Sr and Ba; there is no contact between the metal and the weakly coordinating anion. In all metal complexes, the multidentate ligand is κ(6)-coordinated to the metal. Strong intramolecular M···F secondary interactions between the metal and F atoms from the ancillary ligands are observed in the structures of {15}(4)·3CD(2)Cl(2), {16}(4)·3CD(2)Cl(2), and {{17}(4)·EtOH}·3CD(2)Cl(2). VT (19)F{(1)H} NMR provided no direct evidence that these interactions are maintained in solution; nevertheless, significant Ae···F energies of stabilization of 25-26 (Ca, Ba) and 40 kcal·mol(-1) (Sr) were calculated by NBO analysis on DFT-optimized structures. The identity and integrity of the cationic complexes are preserved in solution in the presence of an excess of alcohol (BnOH, (i)PrOH) or L-lactide (L-LA). Efficient binary catalytic systems for the immortal ring-opening polymerization of L-LA (up to 3,000 equiv) are produced upon addition of an excess (5-50 equiv) of external protic nucleophilic agents (BnOH, (i)PrOH) to 8-12 or 13-17. PLLAs with M(n) up to 35,000 g·mol(-1) were produced in a very controlled fashion (M(w)/M(n) ≈ 1.10-1.20) and without epimerization. In each series of catalysts, the following order of catalytic activity was established: Mg ? Zn < Ca < Sr ≈ Ba; also, Ae complexes supported by the aryloxide ligand are more active than their parents supported by the fluorinated alkoxide ancillary, possibly owing to the presence of Ae···F interactions in the latter case. The rate law -d[L-LA]/dt = k(p)·[L-LA](1.0)·[16](1.0)·[BnOH](1.0) was established by NMR kinetic investigations, with the corresponding activation parameters ΔH(++) = 14.8(5) kcal·mol(-1) and ΔS(++) = -7.6(2.0) cal·K(-1)·mol(-1). DFT calculations indicated that the observed order of catalytic activity matches an increase of the L-LA coordination energy onto the cationic metal centers with parallel decrease of the positive metal charge.  相似文献   

14.
The reaction of terbium and europium salts with the lacunary polyxometalate (POM) [As(2)W(19)O(67)(H(2)O)](14-) and 2-picolinic acid (picH) affords the ternary lanthanoid-organic-polyoxometalate (Ln-org-POM) complexes [Tb(2)(pic)(H(2)O)(2)(B-β-AsW(8)O(30))(2)(WO(2)(pic))(3)](10-) (1), [Tb(8)(pic)(6)(H(2)O)(22)(B-β-AsW(8)O(30))(4)(WO(2)(pic))(6)](12-) (2), and [Eu(8)(pic)(6)(H(2)O)(22)(B-β-AsW(8)O(30))(4)(WO(2)(pic))(6)](12-) (3). A detailed synthetic investigation has established the conditions required to isolate pure bulk samples of the three complexes as the mixed salts H(0.5)K(8.5)Na[1]·30H(2)O, K(4)Li(4)H(4)[2]·58H(2)O, and Eu(1.66)K(7)[3]·54H(2)O, each of which has been characterized by single crystal X-ray diffraction. Complexes 2 and 3 are isostructural and can be considered to be composed of two molecules of 1 linked through an inversion center with four additional picolinate-chelated lanthanoid centers. When irradiated with a laboratory UV lamp at room temperature, compounds K(4)Li(4)H(4)[2]·58H(2)O and Eu(1.66)K(7)[3]·54H(2)O visibly luminesce green and red, respectively, while compound H(0.5)K(8.5)Na[1]·30H(2)O is not luminescent. A variable temperature photophysical investigation of the three compounds has revealed that both the organic picolinate ligands and the inorganic POM ligands sensitize the lanthanoid(III) luminescence, following excitation with UV light. However, considerably different temperature dependencies are observed for Tb(III) versus Eu(III) through the two distinct sensitization pathways.  相似文献   

15.
Chen  G.  Lan  H. H.  Li  Z. X.  Li  D. J.  Peng  G. J.  Cai  S. L.  Zheng  S. R.  Zhang  W. G. 《Russian Journal of Coordination Chemistry》2018,44(12):792-799
Russian Journal of Coordination Chemistry - Two new alkaline earth metal coordination polymers, which are [Ba(H2IDC)-(H3HmIDC)(H2O)2]n (I) and [Sr(H2HmIDC)]n (II) [H3IDC =...  相似文献   

16.
We report the synthesis of four organic-inorganic frameworks of alkaline earth cations with the organic ligand 2,5-thiazolo[5,4-d]thiazoledicarboxylate (C6N2S2O4(2-), Thz(2-)). Structures with remarkably different connectivities result when Mg(2+), Ca(2+), Sr(2+), and Ba(2+) react with Thz(2-). Mg(Thz)(H2O)4 (I) forms a 1-D coordination polymer in which one carboxylate oxygen on each terminus of the ligand connects individual MgO6 octahedra from their axial positions, while the remaining equatorial sites are coordinated by water molecules. Ca2(Thz)2(H2O)8 (II) forms a 1-D coordination polymer in which dimeric clusters with 7-fold Ca coordination are connected via the ligand in a linear fashion, with a second, uncoordinated Thz(2-) providing charge balance. Sr(Thz)(H2O)3 (III) has 1-D infinite inorganic connectivity built from edge-sharing SrO7N polyhedra having one carboxylate oxygen and one water molecule acting as M-O-M bridges. Ba2(Thz)2(H2O)7 (IV) has 2-D inorganic connectivity based upon face- and edge-sharing BaO9N polyhedra. One carboxylate oxygen and all water molecules act as bridges between each Ba(2+) and its three neighbors. We shall discuss the manner in which the increasing coordination requirements of the cations (MgO6 < CaO7 < SrO7N < BaO9N) lead to an increase in inorganic connectivity through the series.  相似文献   

17.
Nucleobase tautomers and their metal complexes have attracted considerable attention due to their fascinating architectures along with wide applications. In this paper, 4,6-dihydroxypyrimidine (H(2)DHP), an analogue of uracil and thymine, was employed to react with the vital elements of alkaline earth metals in an aqueous solution and lead to the formation of four novel complexes, [Mg(HDHP)(2) (H(2)O)(4)] (1), [Ca(HDHP)(2)(H(2)O)(3)](n)·nH(2)O (2), [Sr(HDHP)(2)(H(2)O)(3)](n)·nH(2)O (3), and [Ba(HDHP)(2)(H(2)O)(2)](n)·nH(2)O (4), which have been characterized by elemental analysis, IR, TG, UV-Vis, PL, powder and single-crystal X-ray diffraction and progressively evolve from zero-dimensional (0D) mononuclear, one-dimensional (1D) zig-zag double chain, two-dimensional (2D) double layer, to a three-dimensional (3D) porous network along with the increase of cation radii. This tendency in dimensionality follows salient crystal engineering principles and can be explained by considering factors such as hard-soft acid-base principles and cation radii. The deprotonated H(2)DHP ligand exhibits four new coordination modes, namely, O-monodentate (complex 1), N,O-chelating (complexes 2 and 3), O,O-bridging (complexes 2 and 3), and κ(1)O:κ(2)O-bridging mode (complex 4). Interestingly, the structural investigation indicates that the HDHP(-) monoanion shows three unusual types of tautomers, which are essential for the diagnosis of disease and investigation of medicine. Furthermore, the four complexes exhibit strong blue emission compared to free H(2)DHP ligand at room temperature and may be potential candidates for blue fluorescent biological materials used in organisms.  相似文献   

18.
Structural stability and bonding properties of the hydrogen storage material Mg(2)NiH(4) (monoclinic, C2/c, Z = 8) were investigated and compared to those of Ba(2)PdH(4) (orthorhombic, Pnma, Z = 8) using ab initio density functional calculations. Both compounds belong to the family of complex transition metal hydrides. Their crystal structures contain discrete tetrahedral 18 electron complexes T(0)H(4)(4-) (T = Ni, Pd). However, the bonding situation in the two systems was found to be quite different. For Ba(2)PdH(4), the electronic density of states mirrors perfectly the molecular states of the complex PdH(4)(4-), whereas for Mg(2)NiH(4) a clear relation between molecular states of TH(4)(4-) and the density of states of the solid-state compound is missing. Differences in bonding of Ba(2)PdH(4) and Mg(2)NiH(4) originate in the different strength of the T-H interactions (Pd[bond]H interactions are considerably stronger than Ni[bond]H ones) and in the different strength of the interaction between the alkaline-earth metal component and H (Ba[bond]H interactions are substantially weaker than Mg[bond]H ones). To lower the hydrogen desorption temperature of Mg(2)NiH(4), it is suggested to destabilize this compound by introducing defects in the counterion matrix surrounding the tetrahedral Ni(0)H(4)(4-) complexes. This might be achieved by substituting Mg for Al.  相似文献   

19.
Reaction of aqueous AgNO(3) with aqueous M(3)[Cr(ox)(3)] in >or=3:1 molar ratio causes the rapid growth of large, cherry-black, light-stable crystals which are not Ag(3)[Cr(ox)(3)], but [M(0.5)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)] (ox(2)(-) = oxalate, C(2)O(4)(2)(-); M = Na, K, Cs, Ag, or mixtures of Ag and a group 1 element). The structure of these crystals contains an invariant channeled framework, with composition [[Ag(2.5)Cr(ox)(3)](-)(0.5)]( infinity ), constructed with [Cr(ox)(3)] coordination units linked by Ag atoms through centrosymmetric [Cr-O(2)C(2)O(2)-Ag](2) double bridges. The framework composition [Ag(2.5)Cr(ox)(3)](-)(0.5) occurs because one Ag is located on a 2-fold axis. Within the channels there is a well-defined and ordered set of six water molecules, strongly hydrogen bonded to each other and some of the oxalate O atoms. This invariant channel plus water structure accommodates group 1 cations, and/or Ag cations, in different locations and in variable proportions, but always coordinated by channel water and some oxalate O atoms. The general formulation of these crystals is therefore [M(x)Ag(0.5-x)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)]. Five different crystals with this structure are reported, with compositions 1 Ag(0.5)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 2 Cs(0.19)Ag(0.31)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 3 K(0.28)Ag(0.22)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 4 Cs(0.41)Ag(0.09)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), and 5 Cs(0.43)Ag(0.07) [Ag(2.5)Cr(ox)(3)](H(2)O)(3). All crystallize in space group C2/c, with a approximately 18.4, b approximately 14.6, c approximately 12.3 A, beta approximately 113 degrees. Pure Ag(3)[Cr(ox)(3)](H(2)O)(3), which has the same crystal structure (1), was obtained from water by treating Li(3)[Cr(ox)(3)] with excess AgNO(3). Complete dehydration of all of these compounds occurs between 30 and 100 degrees C, with loss of diffraction, but rehydration by exposure to H(2)O(g) at ambient temperature leads to recovery of the original diffraction pattern. In single crystals, this reversible dehydration-hydration occurs without visually evident crystal change, but with loss of mechanical strength. We postulate a general mechanism for transport of water molecules along the channels, associated with local partial collapses of the channel framework, with concomitant bending but little breaking of the host Ag-O and Cr-O bonds, which is readily reversed.  相似文献   

20.
Density functional theory calculations on complexes of 4C1, 1C4 and 2SO ring conformations of methyl beta-D-xylopyranoside 1 with divalent metal cations, M = Mg2+, Ca2+, Zn2+, and Cd2+, are presented. Bridging and pendant cationic, [M(H2O)41]2+ and [M(H2O)(5)1]2+, as well as neutral complexes, [M(OH)2(H2O)(2)1] and [M(OH)2(H2O)(3)1], and neutral complexes involving a doubly deprotonated sugar, [M(H2O)(4)1(2-)], are considered. In aqueous and chloroform solution the stability of cationic and pendant neutral complexes is greatly diminished compared with gas-phase results. In contrast, bridging neutral complexes [M(OH)2(H2O)(2)1] and those of type [M(H2O)(4)1(2-)], are stabilized with increasing solvent polarity. Solvation also profoundly influences the preferred binding position and ring conformation. Compared with complexes of bare metal cations, additional ligands, e.g., H2O or OH-, significantly reduce the stability of 1C4 ring complexes. Irrespective of the cation, the most stable structure of bridging complexes [M(H2O)(4)1]2+ results from coordination of the metal to O3 and O4 of methyl beta-D-xylopyranoside in its 4C1 ring conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号