首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparations and spectroscopic characteristics are reported of a series of (trimethylgermyl)methyl- and (trimethylstannyl)methylplatinum(II) complexes with diene and P-donor ancillary ligands, cis-Pt(CH2GeMe3)2L2 (L = PPh3 or PPh2Me; L2 = dppe or cod) and cis-Pt(CH2SnMe3)2L2 (L = PPh3; L2 =cod). Thermolysis of toluene solutions of cis-Pt(CH2GeMe3)2(PPh3)2 leads to cis-Pt(Me)(CH2GeMe2CH2GeMe3)(PPh3)2 via β-alkyl migration, after (non-rate-limiting) phosphine dissociation. Estimated activation parameters (ΔH298 K = 126 ± 3 kJ mol−1, ΔS = + 17 ± 7 J mol−1 K−1 and hence Δ298 K = 121 ± 5 kJ mol−1) suggest that this system is more migration labile than its silicon analogue, primarily as a result of a lower activation enthalpy. While cis-Pt(CH2GeMe3)2(PPh2Me)2 reacts similarly but less readily, Pt(CH2GeMe3)2(dppe)2 is inert at operable temperatures. Thermolysis of Pt(CH2GeMe3)2(cod) generates 1,1,3,3,-tetramethyldi-1,3-germacyclobutane as the major organogermanium product, while from cis-Pt(CH2SnMe3)2(PPh3)2, 1,1,3,3-tetramethyldi-1,3-stannacyclobutane predominates. Mechanistic implications are discussed.  相似文献   

2.
Isomerization of phenyl-substituted propargylplatinum(II) complex, trans-Pt(CH2CCPh)(Cl)(PPh3)2 (1) to allenyl complex, trans-Pt(CPh=C=CH2)(Cl)(PPh3)2 (2) was found to be catalyzed by zerovalent complex Pd(PPh3)4. The reaction was proposed to proceed through the transfer of the propargyl/allenyl ligand both from Pt(II) to Pd(0) and Pd(II) to Pt(0). The former transfer, which seemingly has a thermodynamic disadvantage, has unambiguously been confirmed to take place; treatment of 1 with Pd(PPh3)4 or a mixture of Pd2(dba)3 and PPh3 resulted in the formation of Pd(I) complex, Pd2(μ-PhCCCH2)(μ-Cl)(PPh3)2 which lies in equilibrium with a mixture of propargyl/allenylpalladium(II) and Pd(0) complexes.  相似文献   

3.
An η1-butadienyl complex [trans-η1-CH2=C(Me)C=CH2Pd(PPh3)2Cl] (1) reacted with [(μ-η2:η2-1,3-butadiene)Pd2(PPh3)(μCl)Cl] (2) to result in displacement of the diene ligand of 2 accompanied by exchange of PPh3 of 1 with Cl anion of 2 producing a butadienyl tripalladium cluster [(μ-CH2=C(Me)C=CH2)Pd(PPh3)Cl2 · Pd2(PPh3)2(μ-Cl)] (3) stabilized by the zwitterionic structure in moderate yield. The X-ray structure analysis of 3 revealed rigid binding of [Pd2(PPh3)2(μ-Cl)]+ and [CH2 =C(Me)C=CH2Pd(PPh3)Cl2] through the π-bond coordination of the butadienyl group to the dipalladium cation.  相似文献   

4.
The reaction of [(CO)PPh3)2Re(μ-H)2(μ-NCHPh)Ru(PPh3)2(PhCN)] (2) with HBF4-Me2O generates [(CO)PPh3)2Re(μ- H)2(μ,η12HNCHPh)Ru(PPh3)2(PhCN)][BF4] (3). Monitoring the reaction by NMR spectroscopy shows the intermediate formation of [(CO)(PPh3)2 HRe(μ-H)2(μ-NCHPh)Ru(PPh3)2(PhCN)][BF4] (4). Attempted reduction of the imine ligand by a nucleophile (H or CN) failed, regenerating 2. Under dihydrogen at 50 atm, 3 is slowly transformed into [(CO)(PPh3)2HRe(μ-H)3Ru(PPh3)2(PhCN)][BF4] (5) with liberation of benzyl amine.  相似文献   

5.
Reactions of [(η6-arene)RuCl2]2 (1) (η6-arene=p-cymene (1a), 1,3,5-Me3C6H3 (1b), 1,2,3-Me3C6H3 (1c) 1,2,3,4-Me4C6H2(1d), 1,2,3,5-Me4C6H2 (1e) and C6Me6 (1f)) or [Cp*MCl2]2 (M=Rh (2), Ir (3); Cp*=C5Me5) with 4-isocyanoazobenzene (RNC) and 4,4′-diisocyanoazobenzene (CN–R–NC) gave mononuclear and dinuclear complexes, [(η6-arene)Ru(CNC6H4N=NC6H5)Cl2] (4a–f), [Cp*M(CNC6H4N=NC6H5)Cl2] (5: M=Rh; 6: M=Ir), [{(η6-arene)RuCl2}2{μ-CNC6H4N=NC6H4NC}] (8a–f) and [(Cp*MCl2)2(μ-CNC6H4N=NC6H4NC)}] (9: M=Rh; 10: M=Ir), respectively. It was confirmed by X-ray analyses of 4a and 5 that these complexes have trans-forms for the ---N=N--- moieties. Reaction of [Cp*Rh(dppf)(MeCN)](PF6)2 (dppf=1,1′-bis (diphenylphosphino)ferrocene) with 4-isocyanoazobenzene gave [Cp*Rh(dppf)(CNC6H4N=NC6H5)](PF6)2 (7), confirmed by X-ray analysis. Complex 8b reacted with Ag(CF3SO3), giving a rectangular tetranuclear complex 11b, [{(η6-1,3,5-Me3C6H3)Ru(μ-Cl}4(μ-CNC6H4N=NC6H4NC)2](CF3SO3)4 bridged by four Cl atoms and two μ-diisocyanoazobenzene ligands. Photochemical reactions of the ruthenium complexes (4 and 8) led to the decomposition of the complexes, whereas those of 5, 7, 9 and 10 underwent a trans-to-cis isomerization. In the electrochemical reactions the reductive waves about −1.50 V for 4 and −1.44 V for 8 are due to the reduction of azo group, [---N=N---]→[---N=N---]2−. The irreversible oxidative waves at ca. 0.87 V for the 4 and at ca. 0.85 V for 8 came from the oxidation of Ru(II)→Ru(III).  相似文献   

6.
The reaction of K[H6ReL2] with [RuHCl(CO)(PPh3)3−x {P(OPri}3)x](L2 = (PMePh2)2, dppe, (AsPh3)2, or (PPh3)2; x = 0, 1 or 2) leads to [L2(CO)HRe(μ-H)3RuH(PPh3)2−y{P(OPri)3}y] (x = 0 or 1, Y = 0; X = 2, Y = 1(L2 = PPh3)) in a first step. Under the reaction conditions most of these complexes react rapidly with the liberated phosphine giving [L2(CO)Re(μ-H)3Ru(PPh3)3−y- {P(OPri)3}y] (L2 = (PMePh2)2 or dppe, Y = 0; L2 = (PPh3)2, Y = 1) as the only iso complexes. The structure of [(PMePh2)2(CO)Re(μ-H)3Ru(PPh3)3] has been establishedby X-ray structure analysis. The complex [(PPh3)2(CO)Re(μ-H)3Ru(PPh3)2(P(OPri)3)] reacts with molecular hydrogen under pressure to generate [L2(CO)HRe(μ-H)3RuH(PPh3)(P(OPri)3) as the sole product.  相似文献   

7.
The reaction of Cp(dppe)FeI with the ligands 2,2′- and 4,4′-dithiobispyridine (S2(Py)2) give the mononuclear or binuclear complexes of the type [Cp(dppe)Fe-S2(Py)2]PF6, [Cp(dppe)Fe---SPy]PF6 or [{Cp(dppe)Fe}2-μ-SPy](PF6)2 depending on the reaction condition. Reaction of Cp(dppe)FeI with dithiobispyridines in presence of TlPF6 as halide abstractor and using CH2Cl2 as a solvent gives the complexes [Cp(dppe)Fe-4,4′-S2(Py)2)2]PF6 (1) and [CpFe(dppe)-2,2′-S2(Py)2]PF6 (2) whereas the same reaction using CH3OH as a solvent and NH4PF6 as the halide abstractor leads to the formation of the FeIII–thiolate complex [Cp(dppe)Fe-2,2′-SPy]PF6 (3) and the mixed-valence complex [Cp(dppe)FeIII-μSPy-FeII(dppe)Cp](PF6)2 (4). Magnetic and ESR measurements are in agreement with one unpaired electron delocalized between them. Mössbauer data indicate clearly the presence of two different iron sites, each one of the N-bonded and S-bonded iron atoms, with intermediate oxidation state FeII---FeIII. An electron transfer intervalence absorption was observed for this complex at 780 nm (in CH2Cl2). By applying the Hush theory the intervalence parameters were obtained; =0.028, Hab=361 cm−1 which indicate Class II Robin–Day. Estimation of the rate electron transfer affords a value kth=6.5×106 s−1. Solvent effect on the intervalence transition follow the Hush prediction for high dielectric constants solvents which permit the evaluation of the outer and inner-sphere reorganizational parameters, which were analyzed and discussed. The electronic interaction parameters compare well with those found for electron transfer in metalloproteins.  相似文献   

8.
Three families of heterobimetallic compounds were obtained by reaction of [Mo(CO)3(CH3CN)2(Cl)(SnRCl2)] (R = Ph, Me) with P(4-XC6H4)3 (X = Cl, F, H, Me, MeO). The type of compound obtained dependent on the solvent and concentration of the starting compound. So, [Mo(CO)2(CH3COCH3)2(PPh3)(Cl)(SnRCl2)]·nCH3COCH3 (R = Ph, n = 0.5; R = Me, n = 1) (type I) and [Mo(CO)3{P(4-XC6H4)3}(μ-Cl)(SnRCl2)]2 (R = Ph, X = Cl, F, H, Me, MeO; R = Me, X = Cl, F) (type II) were isolated from acetone solution in ca 0.05 M and 0.1 M concentrations, respectively. However, [Mo(CO)3(CH3CN) {P(4-XC6H4)3}(Cl)(SnRCl2)] (R = Ph, X = H; R = Me, X = Cl, F, H) (type III) were obtained from dichloromethane solution independently of the concentration used. All new complexes showed a seven-coordinate environment at molybdenum, containing Mo---Cl and Mo---Sn bonds. Mössbauer spectra indicated a four-coordination at tin for type III complexes.  相似文献   

9.
The mononuclear chelated complex [RuCl(Cp)(η2-dppa)] has been synthesised and reacted with [Rh2Cl2(CO)4] to form the heterobimetallic complex [(Cp)Ru(μ-CO)2{(μ-Ph2PN(H)PPh2}RhCl2]. Complexes of [RuCl(Cp){(PPh2)2CHCH2PPh2}] have been reacted with [Rh2Cl2(CO)4] or [RhCl(CO)2(p-toluidene)]. Characterisation of these new ruthenium complexes was carried out using 31P-NMR, FAB mass spectroscopy, elemental analysis and IR spectrophotometry.  相似文献   

10.
Treatment of [Cp*Ru(dppe)]+ with B-triethynyl-N-trimethylborazine and piperidine produces the trimetallic complex [Cp*Ru(dppe)(CC)]3B3N3Me3, the structure of which has been confirmed by X-ray diffraction. Reaction of RuHCl(CO)(PPh3)3 with B-triethynyl-N-trimethylborazine produces the trimetallic complex [RuCl(CO)(PPh3)2(CH=CH)]3B3N3Me3.  相似文献   

11.
Organolanthanide chloride complexes [(CH3OCH2CH2C5H4)2Ln(μ-Cl)]2 (Ln = La, Pr, Ho and Y) react with excess NaH in THF at 45°C to give the dimeric hydride complexes [(CH3OCH2CH2C5H4)2Ln(μ-H)]2, which have been characterized by IR, 1H NMR, MS and XPS spectroscopy, elemental analyses and X-ray crystallography. [(CH3OCH2CH2C5H4)2Y(μ-H)]2 crystallizes from THF/n-hexane at −30°C, in the triclinic space group P1 with a = 8.795(2) Å, b = 11.040(1) Å, c = 16.602(2) Å, = 93.73(1)°, β = 91.82(1)°, γ = 94.21(1)°, Dc = 1.393 gcm−3 for Z = 2 dimers. However, crystals of [(CH3OCH2CH2C5H4)2Ho(μ-OH)]2 were obtained by recrystallization of holmium hydride in THF/n-hexane at −30°C, in the orthorhombic space group Pbca with a = 11.217(2) Å, b = 15.865(7) Å, c = 17.608(4) Å, Dc = 1.816 gcm−3 for Z = 4 dimers. In the complexes of yttrium and holmium, each Ln atom of the dimers is coordinated by two substituted cyclopentadienyl ligands, one oxygen atom and two hydrogen atoms (for the Y atom) or two hydroxyl groups (for the Ho atom) to form a distorted trigonal bipyramid if the C(η5)-bonded cyclopentadienyl is regarded as occupying a single polyhedral vertex.  相似文献   

12.
Addition of 1,4-dithiols to dichloromethane solutions of [PtCl2(P-P)] (P-P = (PPh3)2, Ph2P(CH2)3PPh2, Phd2P(CH2)4PPh2; 1,4-dithiols = HS(CH2)4SH, (−)DIOSH2 (2,3-O-isopropylidene-1,4-dithiol-l-threitol), BINASH2 (1,1′-dinaphthalene-2,2′-dithiol)) in the presence of NEt3 yielded the mononuclear complexes [Pt(1,4-dithiolato)(P-P)]. Related palladium(II) complexes [Pd(dithiolato)(P-P)] (P-P=Ph2P(CH2)3PPh2, Ph2P(CH2)4PPh2; dithiolato = S(CH2)4S, (−)-DIOS) were prepared by the same method. The structure of [Pt((−)DIOS)(PPh3)2] and [Pd(S(CH2)4S)(Ph2P(CH2)3PPh2)] complexes was determined by X-ray diffraction methods. Pt—dithiolato—SnC12 systems are active in the hydroformylation of styrene. At 100 atm and 125°C [Pt(dithiolate)(P-P)]/SnCl2 (Pt:Sn = 20) systems provided aldehyde conversion up to 80%.  相似文献   

13.
The hydroxo-complexes [{PdR(PPh3)(μ-OH)}2] (R = C6F5 or C6Cl5) have been obtained by reaction of the corresponding [{PdR(PPh3)(μ-Cl)}2] complexes with NBu4OH in acetone. In this solvent, the reaction of the hydroxo-bridged complexes with pyrazole (Hpz) and 3,5-dimethylpyrazole (Hdmpz) in 1:2 molar ratio leads to the formation of the new complexes [{Pd(C5F5)(PPh3)(μ-azolate)}2] and [{Pd(C6Cl5)(PPh3)}2(μ-OH)(μ-azolate)] (azolate = pz or dmpz). The reaction of the bis(μ-hydroxo) complexes with Hpz and Hdmpz in acetone in 1:1 molar ratio has also been studied, and the resulting product depends on the organic radical (C6F5 or C6Cl5) as well as the azolate (pz or dmpz). The identity of the isomer obtained has been established in every case by NMR (1H, 19F and 31P) spectroscopy. The reaction of the bis(μ-hydroxo) complexes with oxalic (H2Ox) and acetic (HOAc) acids yields the binucle ar complexes [{PdR(PPh3)}2(μ-Ox)] (R = C6F5 or C6Cl5) and [{Pd(C6F5)(PPh3)(μ-OAc)}2], respectively. [{Pd(C6F5)(PPh3)(μ-OH)}2] reacts with PPh3 in acetone in 1:2 ratio giving the mononuclear complex trans-[Pd(C6F5) (OH)(PPh3)2], whereas the pentachlorophenylhydroxo complex does not react with PPh3, even under forcing conditions.  相似文献   

14.
The interaction of [(η5-C5H4But)2YbCl · LiCl] with one equivalent of Li[(CH2) (CH2)PPh2] in tetrahydrofuran gave [Ph2PMe2][(η5-C5H4But)2Li] (1) and [(η5-C5H4But)2Yb(Cl)CH2P(Me)Ph2] (2) in 10% and 30% yields, respectively. 1 could also be prepared in 70% yield from the reaction of [Ph2PMe2][CF3SO3] with two equivalents of (C5H4But)Li. Both compounds have been fully characterized by analytical, spectroscopic and X-ray diffraction methods. The solid state structure of 1 reveals a sandwich structure for the [(η5-C5H4But)2Li] anion.  相似文献   

15.
The compound [Ru2(μ-O2CCH3)4(THF)2]BF4 (I) containing the Ru25+ unit was prepared by reaction of Ru2Cl(μ-O2CCH3)4 with AgBF4 in THF. This compound, in contrast with Ru2Cl(μ-O2CCH3)4, is soluble in several polar organic solvents and reacts in THF with OPPh3 and PPh3 giving [Ru2(μ-O2CCH3)4(OPPh3)2]BF4·CH2Cl2 (II) and [Ru(μ-O2CCH3)(O2CCH3)(PPh3)]n (III), respectively. The complex II has been also obtained as hexafluorophosphate [Ru2(μ-O2CCH3)4(OPPh32]PF6·CH2Cl2 (IV) by treatment of Ru2Cl(μ-O2CCH3)4 with an excess of NOPF6 and PPh3 in methanol. In this reaction the triphenylphosphine oxide is generated by oxidation of the triphenylphosphine.  相似文献   

16.
Reaction of optically active ketone complexes (+)-(R)-[(η5-C5H5)Re(NO)-(PPh3)(η1-O=C(R)(CH3)]+ BF4 (R = CH2CH3, CH(CH3)2m C(CH3)3, C6H5) with K(s-C4H9)3BH gives alkoxide complexes (+)-(RS)-(η5-C5H5)Re(NO)(PPh3)-(OCH(R)CH3) (73–90%) in 80–98% de. The alkoxide ligand is then converted to Mosher esters (93–99%) of 79–98% de.  相似文献   

17.
The compound [RU332- -ampy)(μ3η12-PhC=CHPh)(CO)6(PPh3)2] (1) (ampy = 2-amino-6-methylpyridinate) has been prepared by reaction of [RU3(η-H)(μ32- ampy) (μ,η12-PhC=CHPh)(CO)7(PPh3)] with triphenylphosphine at room temperature. However, the reaction of [RU3(μ-H)(μ3, η2 -ampy)(CO)7(PPh3)2] with diphenylacetylene requires a higher temperature (110°C) and does not give complex 1 but the phenyl derivative [RU332-ampy)(μ,η 12 -PhC=CHPh)(μ,-PPh2)(Ph)(CO)5(PPh3)] (2). The thermolysis of complex 1 (110°C) also gives complex 2 quantitatively. Both 1 and 2 have been characterized by0 X-ray diffraction methods. Complex 1 is a catalyst precursor for the homogeneous hydrogenation of diphenylacetylene to a mixture of cis- and trans -stilbene under mild conditions (80°C, 1 atm. of H2), although progressive deactivation of the catalytic species is observed. The dihydride [RU3(μ-H)232-ampy)(μ,η12- PhC=CHPh)(CO)5(PPh3)2] (3), which has been characterized spectroscopically, is an intermediate in the catalytic hydrogenation reaction.  相似文献   

18.
The adducts of O2 and SO2 with trans-MeOIr(CO)(PPh3)2 are formed in equilibria and have been characterized. Reaction of the SO2 adduct, Ir(OMe)(SO2)(CO)(PPh3)2 with dioxygen leads to the sulfato complex, Ir(Ome)(CO)(PPh3)2(SO4), the structure of which has been determined. Ir(Ome)(CO)(PPh3)2(SO4) crystallizes in the monoclinic system with a 11.958(2), b 14.163(3), c 12.231(2) Å, β 118.365(12)°, V 1822.7(6) Å3 and Z = 2. Diffraction data for 2θ = 4.5–45.0° (Mo-K) were collected with a Syntex P21 diffractometer and the structure was solved (assuming space group P21/m and an unpleasant 2-fold disordered model) and refined to R = 4.8% for all 2512 independent data (R = 3.5% for those 2042 data with ¦FO¦ > 6σ(¦F¦)). The iridium(III) atom has a distorted octahedral coordination sphere with trans PPh3 ligands and a cis-chelating bidentate O,O′-SO4 group; the structure is completed by mutually cis OMe and CO ligands.  相似文献   

19.
Six new cluster derivatives [Rh2Co2(CO)6(μ-CO)442-HCCR)] (R=FeCp2 1, CH2OH 2, (CH3O)C10H6CH(CH3)COOCH2CCH 3) and [RhCo3(CO)6(μ-CO)442-HCCR)] (R=FeCp2 4, CH2OH 5, (CH3O)C10H6CH(CH3)COOCH2CCH 6) were obtained by the reactions of [Rh2Co2(CO)12] and [RhCo3(CO)12] with substituted 1-alkyne ligands HCCR [R=FeCp2 7, CH2OH 8, (CH3O)C10H6CH(CH3) COOCH2CCH 9] in n-hexane at room temperature, respectively. Alkynes insert into the Co---Co bond of the tetranuclear clusters to give butterfly clusters. [Rh2Co2(CO)6(μ-CO)442-HCCFeCp2)] (1) was characterized by a single-crystal X-ray diffraction analysis. Reactions of 1, 2 with 7, 8 and ambient pressure of carbon monoxide at 25 °C gave two known cluster complexes [Co2(CO)62, η2-HCCR)] (R=FeCp2 10, CH2OH 11), respectively. All clusters were characterized by element analysis, IR and 1H-NMR spectroscopy.  相似文献   

20.
The crystal structures of propionaldehyde complex (RS,SR)-(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH3)]+ PF6 (1b+ PF6s−; monoclinic, P21/c (No. 14), a = 10.166 (1) Å, b = 18.316(1) Å, c = 14.872(2) Å, β = 100.51(1)°, Z = 4) and butyraldehyde complex (RS,SR)-[(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH2CH3)]+ PF6 (1c+PF6; monoclinic, P21/a (No. 14), a = 14.851(1) Å, b = 18.623(3) Å, c = 10.026(2) Å, β = 102.95(1)°, Z = 4) have been determined at 22°C and −125°C, respectively. These exhibit C O bond lengths (1.35(1), 1.338(5) Å) that are intermediate between those of propionaldehyde (1.209(4) Å) and 1-propanol (1.41 Å). Other geometric features are analyzed. Reaction of [(η5-C5H5)Re(NO)(PPh3)(ClCH2Cl)]+ BF4 and pivalaldehyde gives [(η5-C5H5)Re(NO)(PPh3)(η2-O=CHC(CH3)3)]+BF4 (81%), the spectroscopic properties of which establish a π C O binding mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号