首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum gravitational fluctuations of the space-time background, described by virtual D branes, may induce the neutrino oscillations if a tiny violation of the Lorentz invariance (or a violation of the equivalence principle) is required. In this approach, the oscillation length of massless neutrinos turns out to be proportional to E –2 M, where E is the neutrino energy and M is the mass scale characterizing the topological fluctuations in the vacuum. Such a functional dependence on the energy is the same obtained in the framework of loop quantum gravity.  相似文献   

2.
Neutrino flavor oscillations are analyzed in the framework of Quantum Geometry model proposed by Caianiello. In particular, we analyze the consequences of the model for accelerated neutrino particles that experience an effective Schwarzschild geometry modified by the existence of an upper limit on the acceleration, which implies a violation of the equivalence principle. We find a shift of quantum-mechanical phase of neutrino oscillations, which depends on the energy of neutrinos as E3. Implications on atmospheric and solar neutrinos are discussed.  相似文献   

3.
In the standard theory of neutrino oscillations, it is supposed that physically observed neutrino states ν e , νμ, ντ, have no definite masses, that they are initially produced as a mixture of the ν1, ν2, ν3 neutrino states (i.e., they are produced as a wave packet), and that neutrino oscillations are the real ones. Then, this wave packet must decompose at a definite distance into constituent parts and neutrino oscillations must disappear. It was shown that these suppositions lead to violation of the law of energy and momentum conservation. An alternative scheme of neutrino oscillations obtained within the framework of particle physics has been considered, where the above mentioned shortcomings are absent, the oscillations of neutrinos with equal masses are the real ones, and the oscillations of neutrinos with different masses are the virtual ones. Expressions for probabilities of neutrino transitions (oscillations) in the alternative (corrected) scheme are given. The text was submitted by the author in English.  相似文献   

4.
G. E. Volovik 《JETP Letters》2001,73(4):162-165
In the effective relativistic quantum field theories, the energy region in which special relativity holds can be sandwiched from both the high-and low-energy sides by domains where special relativity is violated. An example is provided by 3He-A, where the relativistic quantum field theory emerges as the effective theory. The reentrant violation of special relativity in the ultralow-energy corner is accompanied by the redistribution of the momentum-space topological charges among the fermionic flavors. At this ultralow energy, an exotic massless fermion with topological charge N 3=2 arises whose energy spectrum mixes classical and relativistic behaviors. This effect can lead to neutrino oscillations, if neutrino flavors are still massless on this energy scale.  相似文献   

5.
We consider the see-saw mechanism for hierarchical Dirac and Majorana neutrino mass matrices m D and M R, including the CP violating phases. Simple arguments about the structure of the neutrino mass matrix and the requirement of successful leptogenesis lead to the situation that one of the right-handed Majorana neutrinos is much heavier than the other two, which in turn display a rather mild hierarchy. It is investigated how for the neutrino mixing one small and two large mixing angles are generated. The mixing matrix element |U e3|2 is larger than 10-3 and a characteristic ratio between the branching ratios of lepton flavor violating charged lepton decays is found. Successful leptogenesis implies sizable CP violation in oscillation experiments. As in the original minimal see-saw model, the signs of the baryon asymmetry of the universe and of the CP asymmetry in neutrino oscillations are equal and there is no connection between the leptogenesis phase and the effective mass as measurable in neutrinoless double beta decay.Received: 28 May 2003, Revised: 13 September 2003, Published online: 26 November 2003  相似文献   

6.
Thomas Schwetz 《Pramana》2009,72(1):119-129
The status of neutrino oscillations from global data is summarized, with the focus on the three-flavour picture. The status of sterile neutrino oscillation interpretations of the LSND anomaly in the light of recent MiniBooNE results is also discussed. Furthermore, an outlook on the measurement of the mixing angle ϑ 13 in the near term future, as well as prospects to discover CP violation in neutrino oscillations and to determine the type of the neutrino mass ordering by long-baseline experiments in the long term future are given.   相似文献   

7.
Measuring the $ \bar \nu _e $ \bar \nu _e component of the cosmic diffuse supernova neutrino background (DSNB) is the next ambitious goal for low-energy neutrino astronomy. The largest flux is expected in the lowest accessible energy bin. However, for E ≲ 15 MeV a possible signal can be mimicked by a solar $ \bar \nu _e $ \bar \nu _e flux that originates from the usual 8B neutrinos by spin-flavor oscillations. We show that such an interpretation is possible within the allowed range of neutrino electromagnetic transition moments and solar turbulent field strengths and distributions. Therefore, an unambiguous detection of the DSNB requires a significant number of events at E ≳ 15 MeV.  相似文献   

8.
Usually it is supposed that Majorana neutrino produced in the superposition state χ L = ν L + (ν L ) c and then follows the neutrinoless double beta decay. But since the standard weak interactions are chiral invariant then neutrino at production has definite helicity (ν L and (ν L ) c have opposite spirality). Then these neutrinos are separately produced and their superposition state cannot appear. Thus we see that for unsuitable helicity the neutrinoless double β decay is not possible even if it is supposed that neutrino is a Majorana particle (i.e. there is not a lepton number which is conserved). Also transition of Majorana neutrino ν L into antineutrino (ν L ) c at their oscillations is forbidden since helicity in vacuum holds. Transition Majora neutrino ν L into (ν R ) c (i.e., ν L → (ν R ) c ) at oscillations is unobserved since it is supposed that mass of (ν R ) c is very big. If neutrino is a Dirac particle there can be transition of ν L neutrino into (sterile) antineutrino $ \bar v_R $ \bar v_R (i.e., ν L → $ \bar v_R $ \bar v_R ) at neutrino oscillations if there takes place double violation of lepton number. It is necessary also to remark that introducing of a Majorana neutrino implies violation of global and local gauge invariance in the standard weak interactions.  相似文献   

9.
A theoretical analysis is made of possible experimental searches for the production of M+ heavy leptons in inclusive neutrino reactions by detection of their decay into μ+. Distributions of observable energy Eobs (sum of hadron and muon energies) and of the apparent y variable yobs(yobs=Ehad/Eobs) are presented. These distributions are used to discuss the problem of distinguishing M+ production from effects of antineutrino admixtures in a neutrino beam.  相似文献   

10.
The final results of the MACRO experiment on atmospheric neutrino oscillations are presented and discussed. The data concern different event topologies with average neutrino energies of ~3 and ~50 GeV. Multiple Coulomb scattering of the high-energy muons in absorbers was used to estimate the neutrino energy of each event. The angular distributions, the L/Eν distribution, the particle ratios, and the absolute fluxes all favor νπτ oscillations with maximal mixing and Δm2=0.0023 eV2. A discussion is made on the Monte Carlos used for the atmospheric neutrino flux. Some results on neutrino astrophysics are also briefly discussed.  相似文献   

11.
Motivated by recent experimental data, we study solar neutrino oscillations in the range δm2/E ε [10−10, 10−7] eV2/MeV. In this range vacuum oscillations become increasingly affected by (solar and terrestrial) matter effects for increasing δm2, smoothly reaching the MSW regime. A numerical study of matter effects in such “quasi-vacuum” regime is performed. The results are applied to the analysis of the recent solar neutrino phenomenology.  相似文献   

12.
The neutrino-electron scattering in a dense degenerate magnetized plasma under the conditions μ 2 > 2eBμE is investigated. The volume density of the neutrino energy and momentum losses due to this process are calculated. The results we have obtained demonstrate that plasma in the presence of an external magnetic field is more transparent for neutrino than for non-magnetized plasma. It is shown that neutrino scattering under conditions considered does not lead to the neutrino force acting on plasma.  相似文献   

13.
NOνA is a long-baseline neutrino experiment designed to study ν μ →ν e and $\overline \nu_{\mu} \to \overline \nu_e $ oscillations. It will measure the neutrino mixing angles θ 13 and θ 23 with high precision, probe the neutrino mass hierarchy, and search for CP violation in neutrino oscillations. The experiment consists of two detectors. The Near Detector will be located at Fermilab close to the source of the neutrino beam. The Far Detector is being built at Ash River in northern Minnesota. It is positioned 14 mrad off the neutrino beam axis where the neutrinos have an energy distribution with a narrow peak around 2 GeV, and where the transition probability of ν μ →ν e is close to its maximum.  相似文献   

14.
15.
We consider non renormalization 1/M x interaction term as a perturbation of the neutrino mass matrix. We find that for the degenerate neutrino mass spectrum. We assume that the neutrino masses and mixing arise through physics at a scale intermediate between Planck Scale and the electroweak scale. We also assume, above the electroweak breaking scale, neutrino masses are nearly degenerate and their mixing is bimaximal. The perturbation generates a non zero value of θ 13, which is within reach of the high performance neutrino factory. In this paper, we find that the non zero value of θ 13 due to Planck scale effects indicates the possibility of CP violation.  相似文献   

16.
D. Diego  M. Quirs 《Nuclear Physics B》2008,805(1-2):148-167
We investigate the nature (Dirac vs. Majorana) and size of left-handed neutrino masses in a supersymmetric five-dimensional model compactified in the interval [0,πR], where quarks and leptons are localized on the boundaries while the gauge and Higgs sectors propagate in the bulk of the fifth dimension. Supersymmetry is broken by Scherk–Schwarz boundary conditions and electroweak breaking proceeds through radiative corrections. Right-handed neutrinos propagate in the bulk and have a general five-dimensional mass M, which localizes the zero modes towards one of the boundaries, and arbitrary boundary terms. We have found that for generic boundary terms left-handed neutrinos have Majorana masses. However for specific boundary configurations left-handed neutrinos are Dirac fermions as the theory possesses a conserved global U(1) symmetry which prevents violation of lepton number. The size of neutrino masses depends on the localization of the zero-modes of right-handed neutrinos and/or the size of the five-dimensional neutrino Yukawa couplings. Left-handed neutrinos in the sub-eV range require either MR10 or Yukawa couplings 10−3R, which make the five-dimensional theory perturbative up to its natural cutoff.  相似文献   

17.
In a 1996 JRO Fellowship Research Proposal (Los Alamos), the author suggested that neutrino oscillations may provide a powerful indirect energy transport mechanism to supernovae explosions. The principal aim of this addendum is to present the relevant unedited text of Section 1 of that proposal. We then briefly remind, (a) of an early suggestion of Mazurek on vacuum neutrino oscillations and their relevance to supernovae explosion, and (b) Wolfenstein's result on suppression of the effect by matter effects. We conclude that whether or not neutrino oscillations play a significant role in supernovae explosions shall depend if there are shells/regions of space in stellar collapse where matter effects play no essential role. Should such regions exist in actual astrophysical situations, the final outcome of neutrino oscillations on supernovae explosions shall depend, in part, on whether or not the LNSD signal is confirmed. Importantly, the reader is reminded that neutrino oscillations form a set of flavor-oscillation clocks and these clock suffer gravitational redshift which can be as large as 20 percent. This effect must be incorporated fully into any calculation of supernova explosion.  相似文献   

18.
Results from Super-Kamiokande-I’s entire 1496 live days of solar neutrino data are presented, including the absolute flux, energy spectrum, zenith angle (day/night) and seasonal variation. The possibility of MSW and vacuum oscillations is discussed in light of these results. Results from the first 1289 days of Super-K-I’s atmospheric neutrino analysis are also presented, including the evidence for νμν τ oscillations, against νμ → νsterile oscillations, and the current limits on proton decay. Finally, results based on 56 × 1019 protons on target are given for the K2K long-baseline neutrino oscillation experiment.  相似文献   

19.
Maury Goodman 《Pramana》2004,62(2):229-240
Following incredible recent progress in understanding neutrino oscillations, many new ambitious experiments are being planned to study neutrino properties. The most important may be to find a non-zero value of θ13. The most promising way to do this appears to be to measurev μv e oscillations with anE/L near Δm atmo 2 . Future neutrino experiments are great.  相似文献   

20.
The energy spectrum of neutrino-induced upward-going muons in MACRO has been analyzed in terms of effects of violating relativity principles, keeping standard mass-induced atmospheric neutrino oscillations as the dominant source of ν μν τ transitions. The data disfavor these exotic possibilities even at a subdominant level, and stringent 90% C.L. limits are placed on the Lorentz invariance violation parameter |Δυ| < 6 × 10−24 at sin(2ϑυ) = 0 and |Δυ| < (2.5–5) × 10−26 at sin(2ϑυ) = ±1. These limits can also be reinterpreted as upper bounds on the parameters describing violation of the equivalence principle. The text was submitted by the author in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号