首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
殷杰  陶超  刘晓峻 《物理学报》2015,64(9):98102-098102
光声成像兼具声学成像和光学成像两者的优点, 因而成为近十年来发展最迅速的生物医学成像技术之一. 本文介绍了光声成像的特点及其相对于广泛应用的光学成像技术和声学成像技术的优点; 其次, 解释了光声成像的成像原理, 在此基础上介绍了光声断层成像和光声显微镜这两种典型的光声成像方案, 并介绍了它们的技术特点; 然后, 介绍了光声成像对生物组织的生化特性、组织力学特性、血液流速分布、温度分布参数、微结构特性等多信息参量的提取能力, 及其在生物系统的结构成像、功能成像、代谢成像、分子成像、基因成像等多领域的应用; 最后, 展望了光声成像在生物医学领域的应用潜力并讨论了其局限性.  相似文献   

2.
光声信号的双谱分析方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
焦阳  简小华  向永嘉  崔崤峣 《物理学报》2013,62(8):87803-087803
基于光声效应的光声光谱技术是光学与声学的有机结合, 可利用不同波长的入射光波, 产生不同的光声信号, 从而为组分识别、组织无损检测等提供高对比度图像, 是一种极具潜力的新型医学诊断技术.但光声光谱检测技术由于受检测方法的制约, 往往扫描时间较长, 而且信号的稳定性和图像识别的准确性也较差. 为了弥补单一光声光谱分析的局限性, 根据光声效应原理和振动理论, 提出了一种光声光谱与光声频谱相结合的双谱分析方法. 该方法通过光声频域信息的定量分析, 可以有效地提高不同组织的光声图像对比度, 从而提高光声成像的组分识别能力, 为光声频谱功能成像奠定理论基础. 实验结果显示, 光声光谱与光声频谱相结合的双谱分析方法可以较好地识别实验组织样品, 可实现高速、高分辨率的组分识别、组织探伤等, 具有广泛的应用前景和重要的临床诊断意义. 关键词: 光声成像 光声光谱分析 光声频谱分析  相似文献   

3.
肿瘤诊断主要采用医学影像结合组织活检病理予以确诊,但尚未实现高效的早期肿瘤筛查,现有影像术的诊断信息不全面和病理的有创、耗时长是关键问题。近年来快速发展起来的新型生物医学光声成像和光声谱分析技术,对生物组织的分子、化学和功能信息高度灵敏,可实现组织"指纹"的量化检测,且实时、无放射性、无电离性,与其他影像技术融合后具有实现无创"质谱"检测的巨大潜力。该文基于光声信号在光学和声学两个维度的谱分析,实现多种肿瘤和正常组织的光声组织"指纹"成像;提取的量化参数对肿瘤、癌前病变和正常组织进行了有效区分。这项技术有望实现高效、无创、低价的在体早期肿瘤筛查。  相似文献   

4.
生物医学光声成像的研究进展   总被引:2,自引:2,他引:0       下载免费PDF全文
陶超  刘晓峻 《应用声学》2012,31(6):401-409
光声成像是21世纪初发展起来的新兴的生物医学成像技术,它同时具备光学成像和声学成像两者的优点,因而备受关注。本文对生物医学光声成像的发展进行了综述。首先,介绍了光声成像的特点以及相对于广泛应用的光学成像技术和声学成像技术的优点;其次,在成像原理上解释了光声成像优点的成因,并介绍了光声断层成像和光声显微镜这两种典型的光声成像技术;再次,详细介绍了多尺度的光声图像分辨率和成像深度,以及多信息维度的光声成像参数;最后,展望了光声成像在生物医学领域的应用潜力并讨论了其局限性。  相似文献   

5.
张涛  陶超  刘晓峻 《应用声学》2021,40(1):11-21
光声成像是一种新兴的复合型生物医学成像技术,它既具有光学成像丰富的光学对比度,又具有声学成像成像深度深、深层组织空间分辨率高的优点.作为一种非侵入式的成像技术,光声成像逐渐显现出极大的生物医学应用潜力.该文首先介绍了光声成像的物理机制,以及光声显微镜和光声计算机断层成像这两种典型的光声成像技术;然后讨论了从光声射频信号...  相似文献   

6.
生物医学光声成像   总被引:4,自引:0,他引:4  
徐晓辉  李晖 《物理》2008,37(2):111-119
能够对组织体中的光学吸收体进行量化评估的光声成像(photoacoustic imaging)是一种有发展前景的医学成像模式.文章综述了处于快速发展阶段的光声成像技术.文章首先介绍光声成像的物理基础--光声效应.在此基础上,阐述光声成像技术的优势所在(与光学以及超声成像相比较).然后讨论目前该领域的主要技术路线,包括扫描层析术、计算机层析术以及原位探测成像技术.最后简要总结了光声成像技术在生物医学领域中的主要应用.  相似文献   

7.
改进的同步迭代算法在光声血管成像中的应用   总被引:3,自引:0,他引:3       下载免费PDF全文
光声成像结合了光学成像和声学成像的优点,是一种高分辨率,高对比度的无损伤医学成像技术.一种改进的同步迭代算法应用于光声图像重建.仿真和模拟结果表明,与传统的代数迭代算法相比,在90°,135°,180°的有限场光声成像中,此算法对测量误差的校正和迭代次数的收敛上具有较大的优势,图像重建的速度和成像质量都有了明显的提高.实验中,一种圆形扫描结构的光声成像装置,用于180°的有限场扫描,利用改进的同步迭代算法,重建出了高对比度和高分辨率(60μm)的鸡胚胎光声血管图像.实验证明,这种算法的应用,大幅度减少了数据采集时间,为光声成像技术运用于实时监测血流灌注和肿瘤光动力治疗的血管损伤效应提供了潜在的应用价值. 关键词: 光声成像 有限角度 代数迭代算法 光声血管成像  相似文献   

8.
本在用X-射线小角衍射聚合与转载先后次序不同的PDA LB膜进行结构表征的基础上,不同厚度的PDA LB膜的光声新斩波频率效应说明,随着PDA LB膜厚度增加,LB膜的热学性质逐渐明显。此外,还探讨了如何从PDA LB膜的光声谱求得光声吸收系数问题,本的研究结果表明,光声谱技术是研究LB膜热学特性的有效手段。  相似文献   

9.
本文在用X-射线小角衍射对聚合与转载先后次序不同的PDALB膜进行结构表征的基础上,不同厚度PDALB膜的光声斩波频率效应说明,随着PDALB膜厚度增加,LB膜的热学性质逐渐明显。此外,还探讨了如何从PDALB膜的光声谱求得光声吸收系数问题,本文的研究结果表明,光声谱技术是研究LB膜热学特性的有效手段。  相似文献   

10.
光声层析成像是一种发展迅速的成像技术,其可提供生物组织的结构和功能信息,结合了光学成像高光学对比度与声学成像高穿透深度的优点.然而,由于现有的反投影成像算法通常将围绕目标扫描的超声换能器等效为一个点探测器,导致非中心成像区域图像的切向模糊,严重影响了图像质量.本文提出一种新的光声层析成像算法,其采用聚焦声场等效模型,可以快速有效地克服换能器孔径效应所造成的声场畸变,恢复非中心成像区域的切向分辨率.仿真结果表明,该方法对直径5 mm,距离旋转中心6 mm的目标,切向分辨率提升至少达2倍.实验结果表明,该方法可以有效地恢复边缘图像的切向模糊,使得复杂目标的微小结构能被清晰探测.这种新方法为传统的反投影方法提供了一种有价值的替代选择,对基于圆/球扫描的光声层析成像系统的设计具有重要的指导作用.  相似文献   

11.
A noninvasive, high-resolution optoacoustic technique is a promising alternative to currently used invasive methods of brain oxygenation monitoring. We present the results of our pilot clinical test of this technique in healthy volunteers. Multiwavelength optoacoustic measurements (with nanosecond optical parametric oscillator as a source of radiation) were performed on the area of the neck overlying the internal jugular vein, a deeply located large vein that drains blood from the brain and from extracranial tissues. Optoacoustic signals induced in venous blood were measured with high resolution and signal-to-noise ratio despite the presence of a thick layer of overlying tissue (up to 10 mm). The characteristic parameters of the signal at different wavelengths correlated well with the spectrum of the effective attenuation coefficient of blood.  相似文献   

12.
Liao CK  Li ML  Li PC 《Optics letters》2004,29(21):2506-2508
Optoacoustic imaging takes advantage of high optical contrast and low acoustic scattering and has found several biomedical applications. In the common backward mode a laser beam illuminates the image object, and an acoustic transducer located on the same side as the laser beam detects the optoacoustic signal produced by thermoelastic effects. A cross-sectional image is formed by laterally scanning the laser beam and the transducer. Although the laser beam width is generally narrow to provide good lateral resolution, strong optical scattering in tissue broadens the optical illumination pattern and thus degrades the lateral resolution. To solve this problem, a combination of the synthetic aperture focusing technique with coherence weighting is proposed. This method synthesizes a large aperture by summing properly delayed signals received at different positions. The focusing quality is further improved by using the signal coherence as an image quality index. A phantom comprising hair threads in a 1% milk solution was imaged with an optoacoustic imaging system. The results show that the proposed technique improved lateral resolution by 400-800% and the signal-to-noise ratio by 7-23 dB over conventional techniques.  相似文献   

13.
In the present paper the requirements for optical parameter characterization of absorbing materials located within a highly scattering medium has been addressed. The measurement scheme incorporates the optoacoustic technique where a single acoustic transducer is used to detect ultrasonic transients generated from laser irradiation. The absorbing medium is based on different concentrations of spherical gold nanoparticles (SGNP’s), these are currently being considered as non-toxic targeted optical contrast agents for both medical imaging and cancer therapeutics. In this paper we present results which demonstrate the two main advantages the optoacoustic technique has over other measurement schemes. These are the possibility to obtain information on the position and dimensions of absorbing bodies using a time of flight analysis (TOF) and secondly, the higher sensitivity of the optoacoustics compared to optical transmission techniques. The former advantage is of particular interest for imaging applications and the latter for detection and characterization of absorbing materials surrounded by high levels of high scattering mediums. We present for the first time the characterization of SGNP within a highly scattering medium. To further demonstrate the feasibility of the optoacoustic technique, the scattering coefficient of the surrounding medium has also been characterized.  相似文献   

14.
Cunningham V  Lamela H 《Optics letters》2010,35(20):3387-3389
We describe a spectroscopic comparative analysis based on the optoacoustic technique over the wavelength range from 410nm to 1000nm using a Q-switched Nd:YAG pumped optical parametric oscillator tunable source on a gold nanostructure solution located within a highly scattering medium. The advantages of this method over standard spectroscopy techniques are the possibility to localize and monitor the spectroscopic response of absorbing materials located within turbid media. The operation is confirmed using a comparative analysis with the spectroscopic results obtained from a reference measurement scheme, based on a highly sensitive collimated optical transmission setup in parallel and under the same experimental conditions as the optoacoustic technique.  相似文献   

15.
当前,医生们利用各种成像技术与疾病进行斗争,其中光学成像技术是获得高分辨率图像的新方法,其原理是每种生物介质具有各自特有的光谱特性,可赖以区分病变组织和正常组织,或对潜在问题准确定位。而光学相干层析则是最精确的光学成像技术,可提供10~20μm量级的高分辨率及比迄今为止任何其他技术都高的灵敏度。本文着重讨论光学相干层析术的基本原理及目前发展状况  相似文献   

16.
Visualizing optical properties, such as the optical absorption coefficient, helps us to obtain structural information of biological tissues. In this paper, we present an efficient reconstruction algorithm for optical energy deposition in backward optoacoustic imaging. Note that econstruction of optical energy deposition is the first step to imaging the optical absorption coefficient distribution. This algorithm is derived from the optoacoustic wave equations with line focusing, in which the focusing techniques were utilized to reduce the reconstruction problem from three dimensions (3-D) to one dimension (1-D). Simulations and experiments were conducted to verify efficacy of this algorithm. In the simulations, optoacoustic signals were generated based on the solution of the optoacoustic wave equations. In the experiments, a 3-D backward mode optoacoustic imaging system was built. The system consisted of a Nd YAG laser for optical irradiation and an acoustic detection system with a broadband hydrophone. A phantom was used to illustrate validity of the proposed algorithm. The results show that optical energy deposition can be efficiently reconstructed in both simulations and experiments.  相似文献   

17.
The characterization of biological tissues by optical techniques provides several advantages over other techniques. Optical techniques enable to perform high resolution and contrast imaging, in a non-invasive way and with no-contact. Biological tissues are turbid media that strongly scatter light. The ultrastructure of some tissues makes them present a certain degree of anisotropy. Both scattering and anisotropy affect light polarization. Some pathologies alter these characteristics of the tissue. As a consequence polarized light can be used to extract additional information and achieve a better diagnosis.In this work, Group Theory is applied to analyse the polarization behavior of several samples. Firstly, the Mueller matrix for each sample is measured. Then, the Mueller Coherency matrix is obtained by means of the SU(4)-O + (6) homomorphism. Finally, the target decomposition theorem is applied by analyzing the eigenvalues and eigenvectors, and subsequently the different polarimetric effects are separated. In this way, the contrast of tissue imaging can be increased. This analysis is applied to biological tissue phantoms, which consisted on glucose suspensions of polystyrene spheres with different scatterer concentrations. Their behaviour can be modeled by means of single or multiple scattering depending on the concentration, either in the Rayleigh or Mie regimes. The same procedure could be used in a wide range of applications, like the study of cancerous cells that grow without control in cell cultures, or erythrocytes monitoring in anemia. The technique also has a great potential to be applied in Polarization Sensitive Optical Coherence Tomography (PS-OCT).  相似文献   

18.
In this paper a spectroscopic characterisation method based on the optoacoustic technique has been used to investigate the optical properties of two separate spherical gold nanoparticle (SGNP) solutions where an absorption peak located at 520 nm has been observed. This analysis has been carried out over the visible wavelength range from 410 to 650 nm using a Q-switched Nd:YAG pumped optical parametric oscillator (OPO). To verify the reliability of optoacoustic spectroscopy (OAS), the results obtained have been compared to those from more standard and limited spectrophotometer and reference collimated optical transmission schemes, where good agreement is shown. The experimental procedure presented here demonstrates the potential of this technique for integration along with optoacoustic imaging methods to identify physiological information for non-destructive in-vivo applications.  相似文献   

19.
Mezil S  Chigarev N  Tournat V  Gusev V 《Optics letters》2011,36(17):3449-3451
Experiments with an all-optical method for the study of the nonlinear acoustics of cracks in solids are reported. Nonlinear acoustic waves are initiated by the absorption of radiation from a pair of laser beams intensity modulated at two different frequencies. The detection of acoustic waves at mixed frequencies, absent in the frequency spectrum of the heating lasers, by optical interferometry or deflectometry provides unambiguous evidence of the elastic nonlinearity of the crack. The high contrast in crack imaging achieved by remote optical monitoring of the nonlinear acoustic processes is due to the strong dependence of the efficiency of optoacoustic conversion on the state of the crack. The highest acoustic nonlinearity is observed in the transitional state of the crack, which is intermediate between the open and the closed ones.  相似文献   

20.
The viscoelastic properties of laser-irradiated cartilages are studied with optoacoustic methods upon the thermal excitation of mechanical oscillations by repetitive-pulse laser radiation. The effect of laser power, pulse duration, repetition rate, and irradiation time on the shape of the optoacoustic signal is analyzed. It is demonstrated that the optoacoustic response of the cartilage to the repetitive-pulse radiation of a fiber laser depends on the softening of the tissue upon the variation in its shape. Under repetitive-pulse laser irradiation, the optoacoustic response of the cartilage depends on the mechanical characteristics of the biotissue (elastic modulus, hydraulic permeability, and thickness). A simple model that makes it possible to estimate the contribution of the viscoelastic properties to the formation of the optoacoustic response at various laser repetition rates is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号