首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a linear operator generated by the differential equation
we prove that its graph is closed and determine the adjoint operator . For elements of the linear manifolds and , we propose an analog of the formula of integration by parts. We establish a criterion for the existence of a pseudosolution of the operator equation and formulate sufficient conditions for the normal solvability of the operator in terms of relations for blocks of the matrix C(t). The results obtained are illustrated by examples. __________ Translated from Neliniini Kolyvannya, Vol. 10, No. 4, pp. 464–480, October–December, 2007.  相似文献   

2.
For a bounded region in a Helmholtz/Weyl decomposition of the Sobolev space is given,with orthogonality with respect to the strain-energy inner product of elasticity (anisotropic or isotropic).  相似文献   

3.
ConsidertheCauchyproblemforthewaveequationinRN×R+(N≥2):2u(x,t)t2-xiaij(x)xju=|u|p-1·u  ((x,t)∈RN×(0,T)),u(x,0)=g(x) (x∈RN),ut(x,0)=h(x) (x∈RN),(1)whereu(x,t)isnontrivialsolutionwithfinitespeedofpropagationandissupportedonaforwardcone(x,t)·t≥0,|…  相似文献   

4.
Inrecentyears,applicationsofquaternionmatricesarebecomingmoreandmoreimportantandextensiveinrigidmechanics,quantummechanics,controltheoryandhelicaltechnology[1~3].Withtherapiddevelopmentoftheabovedisciplines,itisgettingmoreandmorenecessaryforustofurth…  相似文献   

5.
I.IntroductionItiswell4n0wnthatthecontourintergrationofcomp1exvariableftinctioncanmakealotintegrationveryconvenient.Jordan'slemmahasaveryimportantstatusintheonec0mplexvariableintegration,anditisveryusefulforavarityofintegration.Withthetheoryoffunctionsofo…  相似文献   

6.
In the present paper we prove the existence of weak solutions to the equations of non-stationary motion of an incompressible fluid with shear rate dependent viscosity in a cylinder Q = Ω × (0,T), where denotes an open set. For the power-low model with we are able to construct a weak solution with ∇ · u = 0.  相似文献   

7.
We consider the Cauchy problem for a strictly hyperbolic, N × N quasilinear system in one-space dimension
where , is a smooth matrix-valued map and the initial data is assumed to have small total variation. We present a front tracking algorithm that generates piecewise constant approximate solutions converging in to the vanishing viscosity solution of (1), which, by the results in [6], is the unique limit of solutions to the (artificial) viscous parabolic approximation
as . In the conservative case where A(u) is the Jacobian matrix of some flux function F(u) with values in , the limit of front tracking approximations provides a weak solution of the system of conservation laws u t + F(u) x = 0, satisfying the Liu admissibility conditions. These results are achieved under the only assumption of strict hyperbolicity of the matrices A(u), . In particular, our construction applies to general, strictly hyperbolic systems of conservation laws with characteristic fields that do not satisfy the standard conditions of genuine nonlinearity or of linear degeneracy in the sense of Lax[17], or in the generalized sense of Liu[23]. Dedicated to Prof. Tai Ping Liu on the occasion of his 60 th birthday  相似文献   

8.
For a bounded domain and , assume that is convex and coercive, and that has no interior points. Then we establish the uniqueness of viscosity solutions to the Dirichlet problem of Aronsson’s equation:
For H = H(p, x) depending on x, we illustrate the connection between the uniqueness and nonuniqueness of viscosity solutions to Aronsson’s equation and that of the Hamilton–Jacobi equation . Supported by NSF DMS 0601162. Supported by NSF DMS 0601403.  相似文献   

9.
We present an example of a contraction diffeomorphism in infinite dimensions that is not -linearizable, and we construct a regular ordinary differential equation in a Hilbert space whose time-one map is that diffeomorphism. With this we have an example of an asymptotically stable ODE that is not -conjugate to its linear part.  相似文献   

10.
We study the dynamics of vortices in solutions of the Gross–Pitaevsky equation in a bounded, simply connected domain with natural boundary conditions on ∂Ω. Previous rigorous results have shown that for sequences of solutions with suitable well-prepared initial data, one can determine limiting vortex trajectories, and moreover that these trajectories satisfy the classical ODE for point vortices in an ideal incompressible fluid. We prove that the same motion law holds for a small, but fixed , and we give estimates of the rate of convergence and the time interval for which the result remains valid. The refined Jacobian estimates mentioned in the title relate the Jacobian J(u) of an arbitrary function to its Ginzburg–Landau energy. In the analysis of the Gross–Pitaevsky equation, they allow us to use the Jacobian to locate vortices with great precision, and they also provide a sort of dynamic stability of the set of multi-vortex configurations.  相似文献   

11.
Mass conservation and linear momentum balance relations for a porous body and any fluid therein, valid at any given length scale in excess of nearest-neighbour molecular separations, are established in terms of local weighted averages of molecular quantities. The mass density field for the porous body at a given scale is used to identify its boundary at this scale, and a porosity field is defined for any pair of distinct length scales. Specific care is paid to the interpretation of the stress tensor associated with each of the body and fluid at macroscopic scales, and of the force per unit volume each exerts on the other. Consequences for the usual microscopic and macroscopic viewpoints are explored.Nomenclature material system; Section 2.1. - porous body (example of a material system); Sections 2.1, 3.1, 4.1 - fluid body (example of a material system); Sections 2.1, 3.1, 4.1 - weighting function; Sections 2.1, 2.3 - ,h weighting function corresponding to spherical averaging regions of radius and boundary mollifying layer of thicknessh; Section 3.2 - Euclidean space; Section 2.1 - V space of all displacements between pairs of points in; Section 2.1 - mass density field corresponding to; (2.3)1 - P , f mass density fields for , ; (4.1) - P momentum density field corresponding to; (2.3)2 - v velocity field corresponding to; (2.4) - S r (X) interior of sphere of radiusr with centre at pointx; (3.3) - boundary ofany region - region in which p > 0 with = ,h; (3.1) - subset of whose points lie at least+h from boundary of ; (3.4) - abbreviated versions of ; Section 3.2, Remark 4 - strict interior of ; (3.7) - analogues of for fluid system ; Section 3.2 - general version of corresponding to any choice of weighting function; (4.6) - interfacial region at scale; (3.8) - 0 scale of nearest-neighbour separations in ; Section 3.2. Remark 1 - porosity field at scales ( 1; 2); (3.9) - pore space at scales ( 1; 2); (3.12)  相似文献   

12.
We study the limit of the hyperbolic–parabolic approximation
The function is defined in such a way as to guarantee that the initial boundary value problem is well posed even if is not invertible. The data and are constant. When is invertible, the previous problem takes the simpler form
Again, the data and are constant. The conservative case is included in the previous formulations. Convergence of the , smallness of the total variation and other technical hypotheses are assumed, and a complete characterization of the limit is provided. The most interesting points are the following: First, the boundary characteristic case is considered, that is, one eigenvalue of can be 0. Second, as pointed out before, we take into account the possibility that is not invertible. To deal with this case, we take as hypotheses conditions that were introduced by Kawashima and Shizuta relying on physically meaningful examples. We also introduce a new condition of block linear degeneracy. We prove that, if this condition is not satisfied, then pathological behaviors may occur.  相似文献   

13.
Existence of a Solution “in the Large” for Ocean Dynamics Equations   总被引:1,自引:0,他引:1  
For the system of equations describing the large-scale ocean dynamics, an existence and uniqueness theorem is proved “in the large”. This system is obtained from the 3D Navier–Stokes equations by changing the equation for the vertical velocity component u 3 under the assumption of smallness of a domain in z-direction, and a nonlinear equation for the density function ρ is added. More precisely, it is proved that for an arbitrary time interval [0, T], any viscosity coefficients and any initial conditions
a weak solution exists and is unique and and the norms are continuous in t. The work was carried out under partial support of Russian Foundation for Basic Research (project 05-01-00864).  相似文献   

14.
Let be an infinite cylinder of , n ≥ 3, with a bounded cross-section of C 1,1-class. We study resolvent estimates and maximal regularity of the Stokes operator in for 1 < q, r < ∞ and for arbitrary Muckenhoupt weights ω ∈ A r with respect to x′ ∈ Σ. The proofs use an operator-valued Fourier multiplier theorem and techniques of unconditional Schauder decompositions based on the -boundedness of the family of solution operators for a system in Σ parametrized by the phase variable of the one-dimensional partial Fourier transform. Supported by the Gottlieb Daimler- und Karl Benz-Stiftung, grant no. S025/02-10/03.  相似文献   

15.
We study the global attractor of the non-autonomous 2D Navier–Stokes (N.–S.) system with singularly oscillating external force of the form . If the functions g 0(x, t) and g 1 (z, t) are translation bounded in the corresponding spaces, then it is known that the global attractor is bounded in the space H, however, its norm may be unbounded as since the magnitude of the external force is growing. Assuming that the function g 1 (z, t) has a divergence representation of the form where the functions (see Section 3), we prove that the global attractors of the N.–S. equations are uniformly bounded with respect to for all . We also consider the “limiting” 2D N.–S. system with external force g 0(x, t). We have found an estimate for the deviation of a solution of the original N.–S. system from a solution u 0(x, t) of the “limiting” N.–S. system with the same initial data. If the function g 1 (z, t) admits the divergence representation, the functions g 0(x, t) and g 1 (z, t) are translation compact in the corresponding spaces, and , then we prove that the global attractors converges to the global attractor of the “limiting” system as in the norm of H. In the last section, we present an estimate for the Hausdorff deviation of from of the form: in the case, when the global attractor is exponential (the Grashof number of the “limiting” 2D N.–S. system is small).   相似文献   

16.
We prove time local existence and uniqueness of solutions to a boundary layer problem in a rotating frame around the stationary solution called the Ekman spiral. We choose initial data in the vector-valued homogeneous Besov space for 2 <  p <  ∞. Here the L p -integrability is imposed in the normal direction, while we may have no decay in tangential components, since the Besov space contains nondecaying functions such as almost periodic functions. A crucial ingredient is theory for vector-valued homogeneous Besov spaces. For instance we provide and apply an operator-valued bounded H -calculus for the Laplacian in for a general Banach space .  相似文献   

17.
Let be the exterior of the closed unit ball. Consider the self-similar Euler system
Setting α = β = 1/2 gives the limiting case of Leray’s self-similar Navier–Stokes equations. Assuming smoothness and smallness of the boundary data on ∂Ω, we prove that this system has a unique solution , vanishing at infinity, precisely
The self-similarity transformation is v(x, t) = u(y)/(t* − t)α, y = x/(t* − t)β, where v(x, t) is a solution to the Euler equations. The existence of smooth function u(y) implies that the solution v(x, t) blows up at (x*, t*), x* = 0, t* < + ∞. This isolated singularity has bounded energy with unbounded L 2 − norm of curl v.  相似文献   

18.
We consider the Allen–Cahn equation in a bounded, smooth domain Ω in , under zero Neumann boundary conditions, where is a small parameter. Let Γ0 be a segment contained in Ω, connecting orthogonally the boundary. Under certain nondegeneracy and nonminimality assumptions for Γ0, satisfied for instance by the short axis in an ellipse, we construct, for any given N ≥ 1, a solution exhibiting N transition layers whose mutual distances are and which collapse onto Γ0 as . Asymptotic location of these interfaces is governed by a Toda-type system and yields in the limit broken lines with an angle at a common height and at main order cutting orthogonally the boundary.  相似文献   

19.
It is well-known that a KAM torus can be considered as a graph of smooth viscosity solution. Salamon and Zehnder (Comment Math Helv 64:84–132, 1989) have proved that there exist invariant tori having prescribed Diophantine frequencies for nearly integrable and positively definite Lagrangian systems with associated Hamiltonian H, whose Diophantine index is τ. If the invariant torus is represented as in the cotangent bundle , then we can show that for any viscosity solution u (x, P), which satisfies the H-J Eq. (1.1),
when is small enough. For the more exact form, please see Theorem 2 for details.  相似文献   

20.
In this paper, the solution of elliptic equation (sum from k-0 to n) akΔkφ=0 is discussedin detail by the method of separation of variables in complex field. The general solution which can be used in the approximation to the boundary conditions of the practical problems is presented. Two practical examples in mechanics are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号