首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Let q be a positive integer. Recently, Niu and Liu proved that, if nmax?{q,1198?q}, then the product (13+q3)(23+q3)?(n3+q3) is not a powerful number. In this note, we prove (1) that, for any odd prime power ? and nmax?{q,11?q}, the product (1?+q?)(2?+q?)?(n?+q?) is not a powerful number, and (2) that, for any positive odd integer ?, there exists an integer Nq,? such that, for any positive integer nNq,?, the product (1?+q?)(2?+q?)?(n?+q?) is not a powerful number.  相似文献   

2.
3.
4.
5.
Let K be the algebraic closure of a finite field Fq of odd characteristic p. For a positive integer m prime to p, let F=K(x,y) be the transcendence degree 1 function field defined by yq+y=xm+x?m. Let t=xm(q?1) and H=K(t). The extension F|H is a non-Galois extension. Let K be the Galois closure of F with respect to H. By Stichtenoth [20], K has genus g(K)=(qm?1)(q?1), p-rank (Hasse–Witt invariant) γ(K)=(q?1)2 and a K-automorphism group of order at least 2q2m(q?1). In this paper we prove that this subgroup is the full K-automorphism group of K; more precisely AutK(K)=Δ?D where Δ is an elementary abelian p-group of order q2 and D has an index 2 cyclic subgroup of order m(q?1). In particular, m|AutK(K)|>g(K)3/2, and if K is ordinary (i.e. g(K)=γ(K)) then |AutK(K)|>g3/2. On the other hand, if G is a solvable subgroup of the K-automorphism group of an ordinary, transcendence degree 1 function field L of genus g(L)2 defined over K, then |AutK(K)|34(g(L)+1)3/2<682g(L)3/2; see [15]. This shows that K hits this bound up to the constant 682.Since AutK(K) has several subgroups, the fixed subfield FN of such a subgroup N may happen to have many automorphisms provided that the normalizer of N in AutK(K) is large enough. This possibility is worked out for subgroups of Δ.  相似文献   

6.
In this note, we mainly study the relation between the sign of (?Δ)pu and (?Δ)p?iu in Rn with p?2 and n?2 for 1?i?p?1. Given the differential inequality (?Δ)pu<0, first we provide several sufficient conditions so that (?Δ)p?1u<0 holds. Then we provide conditions such that (?Δ)iu<0 for all i=1,2,,p?1, which is known as the sub poly-harmonic property for u. In the last part of the note, we revisit the super poly-harmonic property for solutions to (?Δ)pu=e2pu and (?Δ)pu=uq with q>0 in Rn.  相似文献   

7.
8.
9.
Let Ω?RN be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ?Ω. We show that the solution to the linear first-order system:(1)?ζ=Gζ,ζ|Γ=0, vanishes if GL1(Ω;R(N×N)×N) and ζW1,1(Ω;RN). In particular, square-integrable solutions ζ of (1) with GL1L2(Ω;R(N×N)×N) vanish. As a consequence, we prove that:???:C°(Ω,Γ;R3)[0,),u?6sym(?uP?1)6L2(Ω) is a norm if PL(Ω;R3×3) with CurlPLp(Ω;R3×3), CurlP?1Lq(Ω;R3×3) for some p,q>1 with 1/p+1/q=1 as well as detP?c+>0. We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ΦH1(Ω;R3), Ω?R3, satisfy sym(?Φ??Ψ)=0 for some ΨW1,(Ω;R3)H2(Ω;R3) with det?Ψ?c+>0. Then there exists a constant translation vector aR3 and a constant skew-symmetric matrix Aso(3), such that Φ=AΨ+a.  相似文献   

10.
11.
12.
We define a family KV(g,n+1) of Kashiwara–Vergne problems associated with compact connected oriented 2-manifolds of genus g with n+1 boundary components. The problem KV(0,3) is the classical Kashiwara–Vergne problem from Lie theory. We show the existence of solutions to KV(g,n+1) for arbitrary g and n. The key point is the solution to KV(1,1) based on the results by B. Enriquez on elliptic associators. Our construction is motivated by applications to the formality problem for the Goldman–Turaev Lie bialgebra g(g,n+1). In more detail, we show that every solution to KV(g,n+1) induces a Lie bialgebra isomorphism between g(g,n+1) and its associated graded grg(g,n+1). For g=0, a similar result was obtained by G. Massuyeau using the Kontsevich integral. For g1, n=0, our results imply that the obstruction to surjectivity of the Johnson homomorphism provided by the Turaev cobracket is equivalent to the Enomoto–Satoh obstruction.  相似文献   

13.
The purpose of this article is to compute the mod 2 cohomology of Γq(K), the mapping class group of the Klein bottle with q marked points. We provide a concrete construction of Eilenberg–MacLane spaces Xq=K(Γq(K),1) and fiber bundles Fq(K)/ΣqXqB(Z2×O(2)), where Fq(K)/Σq denotes the configuration space of unordered q-tuples of distinct points in K and B(Z2×O(2)) is the classifying space of the group Z2×O(2). Moreover, we show the mod 2 Serre spectral sequence of the bundle above collapses.  相似文献   

14.
A sharp version of the Balian–Low theorem is proven for the generators of finitely generated shift-invariant spaces. If generators {fk}k=1K?L2(Rd) are translated along a lattice to form a frame or Riesz basis for a shift-invariant space V, and if V has extra invariance by a suitable finer lattice, then one of the generators fk must satisfy Rd|x||fk(x)|2dx=, namely, fk??H1/2(Rd). Similar results are proven for frames of translates that are not Riesz bases without the assumption of extra lattice invariance. The best previously existing results in the literature give a notably weaker conclusion using the Sobolev space Hd/2+?(Rd); our results provide an absolutely sharp improvement with H1/2(Rd). Our results are sharp in the sense that H1/2(Rd) cannot be replaced by Hs(Rd) for any s<1/2.  相似文献   

15.
16.
17.
18.
In a previous work, it was shown how the linearized strain tensor field e:=12(?uT+?u)L2(Ω) can be considered as the sole unknown in the Neumann problem of linearized elasticity posed over a domain Ω?R3, instead of the displacement vector field uH1(Ω) in the usual approach. The purpose of this Note is to show that the same approach applies as well to the Dirichlet–Neumann problem. To this end, we show how the boundary condition u=0 on a portion Γ0 of the boundary of Ω can be recast, again as boundary conditions on Γ0, but this time expressed only in terms of the new unknown eL2(Ω).  相似文献   

19.
In this paper, we apply the variational method with Structural Prescribed Boundary Conditions (SPBC) to prove the existence of periodic and quasi-periodic solutions for the planar four-body problem with two pairs of equal masses m1=m3 and m2=m4. A path q(t) on [0,T] satisfies the SPBC if the boundaries q(0)A and q(T)B, where A and B are two structural configuration spaces in (R2)4 and they depend on a rotation angle θ(0,2π) and the mass ratio μ=m2m1R+.We show that there is a region Ω?(0,2π)×R+ such that there exists at least one local minimizer of the Lagrangian action functional on the path space satisfying the SPBC {q(t)H1([0,T],(R2)4)|q(0)A,q(T)B} for any (θ,μ)Ω. The corresponding minimizing path of the minimizer can be extended to a non-homographic periodic solution if θ is commensurable with π or a quasi-periodic solution if θ is not commensurable with π. In the variational method with the SPBC, we only impose constraints on the boundary and we do not impose any symmetry constraint on solutions. Instead, we prove that our solutions that are extended from the initial minimizing paths possess certain symmetries.The periodic solutions can be further classified as simple choreographic solutions, double choreographic solutions and non-choreographic solutions. Among the many stable simple choreographic orbits, the most extraordinary one is the stable star pentagon choreographic solution when (θ,μ)=(4π5,1). Remarkably the unequal-mass variants of the stable star pentagon are just as stable as the equal mass choreographies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号