首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This personal account concerns novel recent discoveries in the area of mesoporous materials. Most of the papers discussed have been published within the last two to three years. A major emphasis of most of these papers is the synthesis of unique mesoporous materials by a variety of synthetic methods. Many of these articles focus on the control of the pore sizes and shapes of mesoporous materials. Synthetic methods of various types have been used for such control of porosity including soft templating, hard templating, nano‐casting, electrochemical methods, surface functionalization, and trapping of species in pores. The types of mesoporous materials range from carbon materials, metal oxides, metal sulfides, metal nitrides, carbonitriles, metal organic frameworks (MOFs), and composite materials. The vast majority of recent publications have centered around biological applications with a majority dealing with drug delivery systems. Several other bio‐based articles on mesoporous systems concern biomass conversion and biofuels, magnetic resonance imaging (MRI) studies, ultrasound therapy, enzyme immobilization, antigen targeting, biodegradation of inorganic materials, applications for improved digestion, and antitumor activity. Numerous nonbiological applications of mesoporous materials have been pursued recently. Some specific examples are photocatalysis, photo‐electrocatalysis, lithium ion batteries, heterogeneous catalysis, extraction of metals, extraction of lanthanide and actinide species, chiral separations and catalysis, capturing and the mode of binding of carbon dioxide (CO2), optical devices, and magneto‐optical devices. Of this latter class of applications, heterogeneous catalysis is predominant. Some of the types of catalytic reactions being pursued include hydrogen generation, selective oxidations, aminolysis, Suzuki coupling and other coupling reactions, oxygen reduction reactions (ORR), oxygen evolution reactions (OER), and bifunctional catalysis. For perspective, there have been over 40,000 articles on mesoporous materials published in the last 4 years and about 1388 reviews. By no means is this personal account thorough or all inclusive. One objective has been to choose a variety of articles of different types to obtain a flavor of the breadth of diversity involved in the area of mesoporous materials.  相似文献   

2.
Currently, ordered mesoporous materials prepared through the self‐assembly of surfactants have attracted growing interests owing to their special properties, including uniform mesopores and a high specific surface area. Here we focus on fine controls of compositions, morphologies, mesochannel orientations which are important factors for design of mesoporous materials with new functionalities. This Review describes our recent progress toward advanced mesoporous materials. Mesoporous materials now include a variety of inorganic‐based materials, for example, transition‐metal oxides, carbons, inorganic‐organic hybrid materials, polymers, and even metals. Mesoporous metals with metallic frameworks can be produced by using surfactant‐based synthesis with electrochemical methods. Owing to their metallic frameworks, mesoporous metals with high electroconductivity and high surface areas hold promise for a wide range of potential applications, such as electronic devices, magnetic recording media, and metal catalysts. Fabrication of mesoporous materials with controllable morphologies is also one of the main subjects in this rapidly developing research field. Mesoporous materials in the form of films, spheres, fibers, and tubes have been obtained by various synthetic processes such as evaporation‐mediated direct templating (EDIT), spray‐dried techniques, and collaboration with hard‐templates such as porous anodic alumina and polymer membranes. Furthermore, we have developed several approaches for orientation controls of 1D mesochannels. The macroscopic‐scale controls of mesochannels are important for innovative applications such as molecular‐scale devices and electrodes with enhanced diffusions of guest species. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 321–339; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200900022  相似文献   

3.
《Solid State Sciences》2000,2(3):313-334
The latest developments in inorganic membranes are closely related to recent advances in solid state science. Sol–gel processing, plasma-enhanced chemical vapor deposition and hydrothermal synthesis are methods that can be used for inorganic membrane preparation. Innovative concepts from material science (templating effect, nanophase materials, growing of continuous zeolite layers, hybrid organic–inorganic materials) have been applied by our group to the preparation of inorganic membrane materials. Sol–gel-derived nanophase ceramic membranes are presented with current applications in nanofiltration and catalytic membrane reactors. Silica membranes with an ordered porosity, due to liquid crystal phase templating effect, are described with potential application in pervaporation. Defect-free and thermally stable zeolite membranes can be obtained through an original synthesis method, in which zeolite crystals are grown inside the pores of a support. Hybrid organic–inorganic materials with permselective properties for gas separation and facilitated transport of solutes in liquid media, have been successfully adapted to membrane applications. Potential membrane developments offered by CVD deposition techniques are also illustrated through several examples related to the preparation of purely inorganic and hybrid organic–inorganic membrane materials.  相似文献   

4.
《中国化学》2017,35(10):1501-1511
Nowadays, energy shortage and environmental pollution issues are increasingly severe and urgent to be solved. The effective storage and use of environmentally friendly fuels and removal of harmful gases from the environment are great challenges and of great importance both for the environment protection and for human health. Porous metal‐organic frameworks (MOFs) are highly ordered crystalline materials formed by the self‐assembly process of metal ions and organic ligands. Their good features such as ultrahigh porosity, large surface area, structural diversity and functionalities make them promising candidates for applications in energy and environmental fields. MOF thin films and MOF composites have also been investigated to further enhance the properties and introduce new functionalities. This review provides an overview of the synthesis methods of pristine MOFs, MOF thin films and MOF composites, and significant advances of MOFs in energy and environment applications such as energy storage (H2, CH4), CO2 capture and separation, adsorption removal and sensing of harmful gases in the environment.  相似文献   

5.
Adsorption and desorption play major roles in separations, purification of water, waste streams, liquid fuels, catalysis, biomedicine and chromatography. Mesoporous metal–organic frameworks (MOFs) with pore sizes 2–50 nm are particularly suitable for adsorption of organic compounds in solution. Tens of thousands of aromatic and heterocyclic compounds are major components of liquid fuels, feedstock for industrial synthesis, solvents, dyestuffs, agricultural chemicals, medicinal drugs, food additives, and so forth. This Review provides a systematization and analysis of studies on adsorption/desorption on mesoporous MOFs in solution and their underlying chemical mechanisms. The (in)stability of mesoporous MOFs in water is critically discussed. Adsorption capacity and selectivity are covered for organic dyes, medicinal drugs, major components of liquid fuels, and miscellaneous industrial chemicals. Ionic interactions, Brønsted acid–base interactions, hydrogen bonding, coordination bonding, π–π interactions, and non‐specific interactions are covered amongst adsorption mechanisms. The effects of post‐synthetic modifications of mesoporous MOFs on their stability, adsorption capacity, selectivity, and mechanisms of adsorption and desorption are analyzed. To encourage research in this quickly growing field, we identify “niches” for which no application‐oriented and/or mechanistic studies were reported. Perspectives and limitations of a wide use of mesoporous MOFs as industrial sorbents are discussed.  相似文献   

6.
Titanium-containing mesoporous molecular sieves are of great significance in selective catalytic oxidation processes with bulky molecules. Recent researches and developments on the designing and synthesis of Ti-containing mesoporous materials have been reviewed. Various strategies for the preparation of Ti-containing rnesoporous materials, such as direct synthesis and post-synthesis, are described. Modifications of Ti-containing mesoporous materials by surface-grafting and atom-planting are also discussed. All approaches aimed mainly at the improving of the stability, the hydrophobicity, and mostly the catalytic activity. Structural and mechanistic features of various synthetic systems are discussed. Ti-containing mesoporous materials in liquid phase catalytic oxidation of organic compounds with H2O2 as an oxidant is briefly summarized, showing their broad utilities for green synthesis of fine chemicals by catalytic oxidative reactions.  相似文献   

7.
Intensifying energy crises and severe environmental issues have led to the discovery of renewable energy sources, sustainable energy conversion, and storage technologies. Photocatalysis is a green technology that converts eco-friendly solar energy into high-energy chemicals. Covalent organic frameworks (COFs) are porous materials constructed by covalent bonds that show promising potential for converting solar energy into chemicals owing to their pre-designable structures, high crystallinity, and porosity. Herein, we highlight recent progress in the synthesis of COF-based photocatalysts and their applications in water splitting, CO2 reduction, and H2O2 production. The challenges and future opportunities for the rational design of COFs for advanced photocatalysts are discussed. This Review is expected to promote further development of COFs toward photocatalysis.  相似文献   

8.
A review (350 references) is given to the interest of mesoporous materials for designing electrochemical sensors. After a brief summary of the implication of template‐based ordered mesoporous materials in electrochemical science, the various types of inorganic and organic‐inorganic hybrid mesostructures used to date in electroanalysis and the corresponding electrode configurations are described. The various sensor applications are then discussed on the basis of comprehensive tables and some representative illustrations. The main detection schemes developed in the field are (volt)amperometric sensing subsequent to preconcentration and electrocatalytic detection.  相似文献   

9.
本文综述了沸石分子筛及中孔硅基材料在合成方面的最新进展,总结了这类分子筛材料在精细化学品合成中的应用及取得的成果,详细介绍了中孔分子筛的表面改性尤其是有机-无机杂化分子筛的合成、性质、特点及其作为催化剂在有机合成反应中的应用。  相似文献   

10.
Crystalline nanoporous materials serve numerous pivotal functions in industrial chemistry. They provide crucial features for in- dustrial applications, such as high surface area, uniform porosity, inter-connected pore/channel system, accessible pore volume, high adsorp- tion capacity, ion-exchange ability, enhanced catalytic activity, and shape/size selectivity. As a well-established family of nanoporous materi- als, zeolites are of vital importance for the chemical and petrochemical industries. An emerging class of porous materials called metal organic frameworks (MOFs) also offer promise in various applications. Both zeolites and MOFs can play significant roles in fields that are critical for the future of our industrialized society. In the quest for raw material change, zeolites serve as catalysts providing the required shape/size selectivity towards base chemicals. In global efforts to transition into other transportation fuels such as Hydrogen, MOFs serve as the energy storage media. In the fight against environmental pollution, zeolites not only take part in capture and abatement of harmful substances, but also offer environmentally benign alternatives for many industrial processes. In this review, an industrial perspective on the synthesis and utilization of zeolites and MOFs for current and future applications is presented.  相似文献   

11.
Shi Y  Wan Y  Zhao D 《Chemical Society reviews》2011,40(7):3854-3878
Ordered mesoporous inorganic non-oxide materials attract increasing interest due to their plenty of unique properties and functionalities and potential applications. Lots of achievements have been made on their synthesis and structural characterization, especially in the last five years. In this critical review, the ordered mesoporous non-oxide materials are categorized by compositions, including non-oxide ceramics, metal chalcogenides, metal nitrides, carbides and fluorides, and systematically summarized on the basis of their synthesis approaches and mechanisms, as well as properties. Two synthesis routes such as hard-templating (nanocasting) and soft-templating (surfactant assembly) routes are demonstrated. The principal issues in the nanocasting synthesis including the template composition and mesostructure, pore surface chemistry, precursor selection, processing and template removal are emphatically described. A great number of successful cases from the soft-templating method are focused on the surfactant liquid-crystal mesophases to synthesize mesostructured metal chalcogenide composites and the inorganic-block-organic copolymer self-assembly to obtain non-oxide ceramics (296 references).  相似文献   

12.
The integration of organic and inorganic fragments within the pore walls of the periodic mesoporous organosilicas (PMOs) represents one of the recent breakthroughs in material science. The resulting PMOs are promising materials for applications in such areas as catalysis, adsorption, separation and drug-delivery. We summarize here the recent progress made in the synthesis of PMOs with hierarchical structures and large functional groups, with special emphasis on the chiral mesoporous organosilicas and their ...  相似文献   

13.
非水介质中合成介孔分子筛MCM-41   总被引:1,自引:0,他引:1  
首次采用十六烷基三甲基溴化铵为模板剂、正硅酸乙酯为硅源, 分别使用无机和有机弱碱, 溶剂热晶化法在非水甘油介质中合成了介孔分子筛MCM-41, 通过XRD, N2吸附-脱附, TG-DTG, IR, SEM等测试手段对样品进行了表征分析, 结果表明在甘油体系中得到的样品具有优良的孔结构性质. 相比于氢氧化钠, 以有机弱碱(无水乙二胺、三乙胺)作为碱源, 可以得到有序性更好、结晶度高的样品, 样品具有较窄的孔径分布.  相似文献   

14.
15.
高效氧催化反应中的金属有机骨架材料(英文)   总被引:1,自引:0,他引:1  
氧电催化反应包括氧气还原反应(ORR)和氧气析出反应(OER).作为核心电极反应,这两个反应对诸多能源存储与转换技术(比如燃料电池、金属空气电池以及全水分解制氢等)的能量效率起决定性作用.然而,ORR和OER涉及多个反应步骤、多个电子转移过程以及多相界面传质过程.这些复杂的过程较大程度上限制了ORR和OER的反应速率.从理论和实践两个方面来看,ORR和OER都需要高效电催化剂的参与来促进其反应速率,从而能够最终提高上述能源存储与转换技术的能量转换或利用效率.目前,以Pt,Pd,Ir,Ru为代表的贵金属基电催化剂具有十分突出的电催化性能.但是,过高的成本和过低的储量始终制约着贵金属基电催化剂在催化ORR和OER反应方面,乃至在能源存储与转换技术领域的规模化应用.因而,开发高效非贵金属基氧电催化剂成为近年来能源存储与转换领域的研究重点之一.在众多已经报道的非贵金属基氧电催化剂中,金属有机骨架材料(MOFs)备受瞩目.MOFs是一类由有机配体和金属节点通过配位键自组装而成的晶态多孔材料.它们具备超高比表面积、超高孔隙率以及规则性纳米孔道.相比较其他传统的多孔材料(比如活性炭、分子筛、介孔炭、介孔氧化硅等),MOFs最主要的优势在于它们的结构和功能可以依据需求通过选择合适的有机配体和金属节点进行便利地设计,或通过后处理进行必要的改性和调节.基于独特的多孔特性以及结构与功能的可设计、可调节性,MOFs在气体分离与存储、异相催化、化学传感、药物输送、环境保护以及能源存储与转化等领域都具有潜在的应用价值.因而,近年来,MOFs备受基础研究领域和工业界的青睐.针对MOFs开展的基础研究和应用开发逐渐成为诸多领域的研究焦点.也正由于MOFs具有的上述优异特性,尤其是结构与功能的可设计、可调节性,使得设计制备基于单纯MOFs以及MOFs衍生材料成为开发高效非贵金属基氧电催化剂的新途径.本综述首先论述了基于单纯MOFs的氧电催化剂(包括纯MOFs、活性物种修饰的MOFs以及与导电材料构成的复合MOFs)的合成以及它们在ORR或OER催化反应中应用的研究进展.在第二部分论述中,本综述主要针对MOFs衍生的各类氧电催化剂(包括无机微米-纳米结构/多孔碳复合材料、纯多孔碳材料、纯无机微米-纳米结构材料以及单原子型电催化材料)的研究进展进行了简要介绍和讨论.最后,本综述对MOFs基氧电催化剂目前存在的挑战进行了简要分析;同时,也对这类氧电催化剂的通用设计准则以及未来发展方向进行了展望.尽管存在诸多挑战,MOFs始终被认为是极好的"平台"材料.充分利用它们将有利于开发高效且实用的非贵金属基氧电催化剂.  相似文献   

16.
Qiu H  Che S 《Chemical Society reviews》2011,40(3):1259-1268
Fabrication of chiral materials and revealing the mechanisms involved in their formation are crucial issues in scientific research. The combination of cooperative self-assembly routes and the chiral templating process favors the formation of inorganic chiral materials with highly ordered mesostructures. This tutorial review highlights the recent research on chiral mesoporous silica (CMS) of hierarchical helical constructions transcribed from organic templates. The rules and mechanisms involved in the synthesis of CMS and related materials, especially the novel expression of chirality and imprinting of helical micellar superstructure by the functional groups immobilized on the mesopore surface, provide us with a deeper insight into the chiral self-assembly process and new strategies for the design and application of chiral materials. This review is addressed to researchers and students interested in chiral chemistry, supramolecular chemistry and mesoporous materials (53 references).  相似文献   

17.
太阳能光催化是CO_2转化和利用的新兴技术,直接利用洁净充足的太阳能将自然界富有的"温室气体"CO_2转化成化学燃料,不仅有利于消除大气温室效应,而且能缓解能源短缺问题,因而成为人们研究的一个重要方向.但目前CO_2的吸附和转换效率还很低,这是太阳能光催化CO_2资源化的最大障碍.高性能光催化剂的设计和合成是这项技术的关键.针对CO_2光还原反应的特异性,理想的光催化材料应该具有以下功能:强的CO_2吸附能力和高的光催化活性.将光催化剂与对CO_2具有高吸附性的多孔材料结合,就可以将CO_2吸附并富集在吸附剂周围的光催化剂表面上以进行催化转化,因此基于高效多孔吸附材料构筑光催化体系成为光催化转化CO_2的重要研究方向之一.CO_2的循环利用包括吸附和转化两方面,高吸附量的多孔材料是获得CO_2高转化效率的前提.本文首先以多孔材料结构参数及性能指标为主线,对无机多孔材料、金属有机框架材料及微孔有机聚合物材料的研究进展及应用前景进行了评述.通过对多孔材料的改性和新型多孔材料的开发,CO_2的吸附能力得到一定的提升,但是仅仅依靠多孔材料的吸附分离,不能实现CO_2中的碳资源循环.在此基础上,本文重点评述了多孔光催化材料在CO_2光催化转化中的最新研究进展.采用多孔材料与光催化剂结合,可增加材料的比表面积,在界面处暴露更多的活性位点,有利于光催化CO_2转化的进行;同时,通过孔结构和基团调控,可以调控光催化剂的反应活性和产物选择性.特别是金属有机框架材料与微孔有机聚合物材料,改变构建单元的官能团和制备技术还可以实现光谱响应范围的调控,提高太阳光的利用率.大量文献对比发现,引入较高CO_2吸附效率的多孔材料构建光催化体系,CO_2光催化转化的效率及产物选择性显著提高.最后,本文对多孔材料在CO_2光催化转化领域的研究现状与亟待解决的问题进行了剖析,提出了下一步可能的研究方向:(1)提高多孔材料自身的稳定性如耐水性能与光/热稳定性;(2)发展光催化材料在多孔载体的微观组装方法,不影响CO_2吸附效率的前提下提高光催化活性;(3)深入研究多孔光催化材料内部与表面的CO_2转化机理,为进一步提高吸附与转化效率提供理论指导.  相似文献   

18.
New hybrid organic–inorganic materials exhibiting ordered mesoporous structures have been synthesized by co-condensation of tetraethoxysilane and various alkyltrimethoxysilanes with increasing length of the hydrocarbon chain (propyl, octyl, hexadecyl), in water–ethanol solution containing ammonia, in the presence of a cationic surfactant (cetyltrimethylammonium bromide) as templating agent. The obtained hybrid materials were characterized by using several physico-chemical techniques, such as X-ray diffraction, N2 adsorption, 29Si MAS NMR, SEM and elemental analysis. It was shown that the direct synthesis procedure allows obtaining ordered hybrid mesoporous silica with various contents of organic functions, from 5 to 20 %. Moreover, increasing the chain length of the organic group, from propyl to octyl and hexadecyl leads to a change of the pore structure from hexagonal p6mm MCM-41 type architecture to cubic Ia3d MCM-48 type mesostructure.  相似文献   

19.
Work in mesoporous silica-based materials began in the early 1990s with work by Mobil. These materials had pore sizes from 20-500 A and surface areas of up to 1500 m(2) g(-1) and were synthesized by a novel liquid crystal templating approach. Researchers subsequently extended this strategy to the synthesis of mesoporous transition metal oxides, a class of materials useful in catalysis, electronic, and magnetic applications because of variable oxidation states, and populated d-bands-features not found in silicates. These materials are already showing promise in electronic and optical applications hinging on the semiconducting properties of transition metal oxides and their potential to act as electron acceptors, an important feature in the design of cathodic materials. This is the first general review of non-silicate mesoporous materials and will focus on recent advances in this area, emphasizing materials possessing unique electronic, magnetic, or optical properties. Also covered are advances in the synthesis and applications of mesostructured sulfides as well as a new class of template-synthesized platinum-based materials that show promise in heterogeneous catalysis.  相似文献   

20.
介孔气体吸附剂   总被引:1,自引:0,他引:1  
介孔二氧化硅经过表面修饰,赋予介孔材料不同的特性,具有很多的潜在用途,是无机材料研究的热点之一。本文综述了近年来以介孔二氧化硅(M41S 和 SBA)为载体设计的气体吸附剂的研究进展。详细讨论了二氧化碳和可挥发性有机物(VOCs)在介孔吸附剂上的吸附过程;介绍了二氧化碳介孔吸附剂的不同制备方法和影响二氧化碳在介孔吸附剂上吸附的因素,以及介孔吸附剂的结构对可挥发性有机物吸附过程的影响。最后,对介孔气体吸附剂的发展进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号