首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 759 毫秒
1.
The adsorption of coronene (C24H12) on the Si(1 1 1)-(7 × 7) surface is studied using scanning tunneling microscopy (STM). Upon room temperature submonolayer deposition, we find that the coronene molecules preferentially adsorb on the unfaulted half of the 7 × 7 unit cell. Molecules adsorbed on different sites can be induced to move to the preferential sites by the action of the tip in repeated image scans. Imaging of the molecules is strongly bias dependent, and also critically depends on the adsorption site. We analyze the results in terms of differential bonding strength for the different adsorption sites and we identify those substrate atoms which participate in the bonding with the molecule.  相似文献   

2.
The interaction of atomic H with Ag(1 1 1)/Si(1 1 1)7 × 7 surfaces was studied by thermal desorption (TD) spectroscopy and scanning tunneling microscopy (STM) at room temperature. TD spectroscopy revealed an intense peak from mono H–Si bonds, even though the Si surface was covered by the Ag atoms. This peak was not observed from Ag-coated SiO2/Si substrates. STM observation showed no clear change of the Ag surface morphology resulting from H exposure. All these results indicate that the atomic H adsorbs at neither the Ag surfaces nor Ag bulk sites, but at the Ag/Si interface by diffusing through the Ag film.  相似文献   

3.
Optical second harmonic generation spectra have been experimentally obtained from a clean Si(111) 7 × 7 in two different polarization configurations isolating the rotational anisotropic and isotropic contributions. The energy of the fundamental photon is varied from 0.8 eV to 2.5 eV. For comparison, we also use a microscopic formulation based on the semi-empirical tight binding method to evaluate the nonlinear surface susceptibility tensor χ(2ω). Good agreement between theory and experiment is obtained with respect to the number of resonances, their position in energy, and surface or bulk character.  相似文献   

4.
Wei Jie Ong  Eng Soon Tok 《Surface science》2012,606(13-14):1037-1044
Using Scanning Tunneling Microscope (STM), we show that the surface undergoes phase transformation from disordered “1 × 1” to (7 × 7) reconstruction which is mediated by the formation of Si magic clusters. Mono-disperse Si magic clusters of size ~ 13.5 ± 0.5 Å can be formed by heating the Si(111) surface to 1200 °C and quenching it to room temperature at cooling rates of at least 100 °C/min. The structure consists of 3 tetra-clusters of size ~ 4.5 ? similar to the Si magic clusters that were formed from Si adatoms deposited by Si solid source on Si(111)-(7 × 7) [1]. Using real time STM scanning to probe the surface at ~ 400 °C, we show that Si magic clusters pop up from the (1 × 1) surface and form spontaneously during the phase transformation. This is attributed to the difference in atomic density between “disordered 1 × 1” and (7 × 7) surface structures which lead to the release of excess Si atoms onto the surface as magic clusters.  相似文献   

5.
We have carried out a combined X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy(UPS), and scanning tunnelling microscopy (STM) study of the C60-Si(1 1 1) interaction where the XPS/UPS spectrometer and STM are integrated on a single UHV system. This enables a direct comparison of the XPS/UPS spectra with the STM data and eliminates any uncertainty in C60 coverage measurements. X-ray standing wave measurements and density functional theory calculations have been used to support and interpret the results of the XPS/UPS/STM experiments. Our data conclusively rule out models of C60 adsorption which involve a mixture of physisorbed and chemisorbed molecules [K. Sakamoto, et al., Phys. Rev. B 60 (1999) 2579]. Instead, we find that all molecules, up to 1 monolayer coverage, bond to the surface via Si–C bonds which are predominantly of covalent character.  相似文献   

6.
We report on an interface-stabilized strained c(4 × 2) phase formed by cobalt oxide on Pd(1 0 0). The structural details and electronic properties of this oxide monolayer are elucidated by combination of scanning tunneling microscopy data, high resolution electron energy loss spectroscopy measurements and density functional theory. The c(4 × 2) periodicity is shown to arise from a rhombic array of Co vacancies, which form in a pseudomorphic CoO(1 0 0) monolayer to partially compensate for the compressive strain associated with the large lattice mismatch (~9.5%) between cobalt monoxide and the substrate. Deviation from the perfect 1:1 stoichiometry thus appears to offer a common and stable mechanism for strain release in Pd(1 0 0) supported monolayers of transition metal rocksalt monoxides of the first transition series, as very similar metal-deficient c(4 × 2) structures have been previously found for nickel and manganese oxides on the same substrate.  相似文献   

7.
《Surface science》2003,470(1-2):L840-L846
Chemisorption of a family of six chloroethylenes (C2H3Cl, 1,1-C2H2Cl2, cis-1,2-C2H2Cl2, trans-1,2-C2H2Cl2, C2HCl3, and C2Cl4) on Si(1 1 1)7 × 7 at room temperature (RT) has been investigated by vibrational electron energy loss spectroscopy (EELS). The characteristic vibrational EELS features have been used to identify the prominent surface species upon RT adsorption. Like ethylene, C2H3Cl has been found to predominantly adsorb in a di-σ bonding geometry to the Si surface, while 1,1-C2H2Cl2, cis- and trans-1,2-C2H2Cl2, C2HCl3 and, to a lesser extent, C2Cl4 appear to undergo dechlorination upon adsorption to form chlorinated vinyl adspecies involving single-σ bonding structures. Evidence of vinylidene (>CCH2) has been obtained for the first time on a semiconductor surface for the adsorption of 1,1-C2H2Cl2. The present work illustrates that the molecular structure and the Cl content of chloroethylenes play a crucial role in controlling not only the adsorption geometry but also the extent of dechlorination and the resulting adspecies upon RT adsorption on Si(1 1 1).  相似文献   

8.
Structures of monolayer nickel nitride (NiN) on Cu(0 0 1) surface are studied by X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Formations of Ni–N chemical bonds and NiN monolayer at the surface are confirmed by XPS on the N-adsorbed Cu(0 0 1) surfaces after Ni deposition and subsequent annealing to 670 K. A c(2 × 2) structure is always observed in the LEED patterns, which is a quite contrast to the (2 × 2)p4g structure observed usually at the N-adsorbed Ni(0 0 1) surface. Atomic images by STM indicate the mixture of Ni–N and Cu–N structures at the surface. Density of the trenches on the N-saturated surface decreases and the grid pattern on partially N-covered surfaces becomes disordered with increasing the Ni coverage. These results are attributed to the decrease of the surface compressive stress at the N-adsorbed Cu surface by mixing Ni atoms.  相似文献   

9.
10.
Continuous-time photoelectron spectroscopy (PES) and photon-exposure-dependent photon-stimulated desorption (PSD) were employed to investigate the monochromatic soft X-ray-induced dissociation of SF6 molecules adsorbed on Si(111)-7 × 7 at 30 K (SF6 dose = 3.4 × 1013 molecules/cm2, ~ 0.5 monolayer). The photon-induced evolution of adsorbed SF6 was monitored at photon energies of 98 and 120 eV [near the Si(2p) edge], and sequential valence-level PES spectra made it possible to deduce the photolysis cross section as a function of energy. It was found that the photolysis cross sections for 98 and 120 eV photons are ~ 2.7 × 10? 17 and ~ 3.7 × 10?17 cm2, respectively. The changes in the F? and F+ PSD ion yields were also measured during irradiation of 120 eV photons. The photon-exposure dependencies of the F? and F+ ion yields show the characteristics: (a) the dissociation of adsorbed SF6 molecules is ascribable to the substrate-mediated dissociations [dissociative attachment (DA) and dipolar dissociation (DD) induced by the photoelectrons emitting from the silicon substrate]; (b) at early stages of photolysis, the F? yield is mainly due to DA and DD of the adsorbed SF6 molecules, while at high photon exposure the F? formation by electron capture of the F+ ion is likely to be the dominant mechanism; (c) the F+ ion desorption is associated with the bond breaking of the surface SiF species; (d) the surface SiF is formed by reaction of the surface Si atom with the fluorine atom or F? ion produced by scission of S–F bond of SFn (n = 1–6) species.  相似文献   

11.
The interaction of O2 and CO2 with the Si(111)-7 × 7 surface has been studied with X-ray photoelectron spectroscopy (XPS). It was found that both O2 and CO2 molecules can readily oxidize the Si(111)-7 × 7 surface to form thin oxide films. Two oxygen species were identified in the oxide film: oxygen atoms binding to on-top sites of adatom/rest atoms with an O 1s binding energy of ~ 533 eV as well as to bridge sites of adatom/rest atom backbonds at ~ 532 eV. These two oxygen species can be interconverted thermally during the annealing process. Due to the low oxidation capability, the silicon oxide film formed by CO2 has a lower O/Si ratio than that of O2.  相似文献   

12.
The adsorption of methanol, formaldehyde, methoxy, carbon monoxide and water on a (2 × 1) PdZn surface alloy on Pd(1 1 1) has been studied using DFT calculations. The most stable adsorption structures of all species have been investigated with respect to the structure and the electronic properties. It was found that methanol is only weakly bound to the surface. The adsorption energy only increases with higher methanol coverage, where chain structures with hydrogen bonds between the methanol molecules are formed. The highest adsorption energy was found for the formate species followed by the methoxy species. The formaldehyde species shows quite some electronic interaction with the surface, however the stable η2 formaldehyde has only an adsorption energy of about 0.49 eV. The calculated IR spectra of the different species fit quite well to the experimental values available in the literature.  相似文献   

13.
Fullerene (C60) molecules on an Si(111)-(7 × 7) surface have been investigated using non-contact scanning non-linear dielectric microscopy (NC-SNDM) under an ultra-high vacuum. The topography, the interface between the C60 molecule and Si adatoms, and the internal structure of the C60 molecules were successfully investigated. For ~ 0 ML and ~ 0.4 ML coverage, both phase reversal sites and sites without phase reversal could be observed in the first order phase (θ1) image. On the other hand, for 1 ML coverage, phase reversal could not be identified. These results indicate that charge transfer only occurred from Si adatoms to C60 molecules at three-fold symmetric sites on the Si(111)-(7 × 7) surface, and the electric dipole moment is reflected in the electronic state of the C60 molecules. The internal structure of C60 molecules was clearly observed in topography by the second order amplitude (A2) feedback signal for 1 ML coverage, reflecting the LDOS originating from the t1u orbital.  相似文献   

14.
S. ?zkaya  M. ?akmak  B. Alkan 《Surface science》2010,604(21-22):1899-1905
The surface reconstruction, 3 × 2, induced by Yb adsorption on a Ge (Si)(111) surface has been studied using first principles density-functional calculation within the generalized gradient approximation. The two different possible adsorption sites have been considered: (i) H3 (this site is directly above a fourth-layer Ge (Si) atom) and (ii) T4 (directly above a second-layer Ge (Si) atom). We have found that the total energies corresponding to these binding sites are nearly the same, indeed for the Yb/Ge (Si)(111)–(3 × 2) structure the T4 model is slightly energetic by about 0.01 (0.08) eV/unitcell compared with the H3 model. In particular for the Ge sublayer, the energy difference is small, and therefore it is possible that the T4, H3, or T4H3 (half of the adatoms occupy the T4 adsorption site and the rest of the adatoms are located at the H3 site) binding sites can coexist with REM/Ge(111)–(3 × 2). In contrast to the proposed model, we have not determined any buckling in the Ge = Ge double bond. The electronic band structures of the surfaces and the corresponding natures of their orbitals have also been calculated. Our results for both substrates are seen to be in agreement with the recent experimental data, especially that of the Yb/Si(111)–(3 × 2) surface.  相似文献   

15.
The atomic structures and the formation processes of the Ga- and As-rich (2×2) reconstructions on GaAs(111)A have been studied. The Ga-rich (2×2) structure is formed by heating the As-rich (2×2) phase, but the reverse change hardly occurs by cooling the Ga-rich surface under the As2 flux. Only when the Ga-rich (2×2) surface covered with amorphous As layers was thermally annealed, the As-rich (2×2) surface is formed. The As-rich (2×2) surface consists of As trimers located at a fourfold atop site of the outermost Ga layer, in which the rest-site Ga atom is replaced by the As atom.  相似文献   

16.
Since more than twenty years it is known that deposition of Ag onto Si(111)–(7 × 7) leads under certain conditions to the formation of so-called “ring-like” clusters, that are particularly stable among small clusters. In order to resolve their still unknown atomic structure, we performed voltage dependent scanning tunneling microscopy (STM) measurements providing interesting information about the electronic properties of clusters which are linked with their atomic structure. Based on a structural model of Au cluster on Si(111)–(7 × 7) and our STM images, we propose an atomic arrangement for the two most stable Ag “ring-like” clusters.  相似文献   

17.
The aim of this work is to revisit the problem of acetylene adsorption on silicon (100). Extending previous theoretical work and including van der Waals forces explicitly in the simulations we remove existing ambiguities about the adsorption sites. The simulated adsorption energies and scanning tunneling microscopy contours are in good agreement with experimental data, they support the interpretation of a two-dimer feature at the surface as resulting from the adsorption of two individual molecules. It is also found that the simulated apparent heights agree with experimental values, if the actual bandgap of silicon is taken into account.  相似文献   

18.
Low-energy electron diffraction (LEED) have been used to determine the Cu(0 0 1)–c(4 × 4)-Sn structure formed at 300 K. It is demonstrated that a structural model suggested by scanning tunneling microscopy observations is correct: The model consists of one substitutional Sn atom and four Sn adatoms in the unit cell. Optimum parameters of the determined c(4 × 4) structure reveal that Sn adatoms laterally are displaced by 0.30 Å away from ideal fourfold-hollow sites along the 〈100〉 directions. It is proposed that such displacements of the Sn adatoms cause the formation of a network of octagonal rings on Cu(0 0 1). The substitutional Sn atom is located at each center of the octagonal rings. The formation conditions of the network are discussed.  相似文献   

19.
Synchrotron radiation based photoemission spectroscopy (SRPES) and low energy electron diffraction (LEED) are used to study the interaction between Ag atoms and the Si(1 1 1)1 × 1–H surface. At an Ag coverage of 0.063 monolayers (ML) on the Si(1 1 1)1 × 1–H surface, the Si 2p component corresponding to Si–H bonds decreases, and an additional Si 2p component appears which shifts to a lower binding energy by 109 meV with respect to the Si bulk peak. The new Si 2p component is also observed for 0.25 ML Ag on the Si(1 1 1)7 × 7 surface. These findings suggest that Ag atoms replace the H atoms of the Si(1 1 1)1 × 1–H surface and form direct Ag–Si bonds. Contrary to the widely accepted view that there is no chemical interaction between Ag particles and the H-passivated Si surface, these results are in good agreement with recent first-principles calculations.  相似文献   

20.
A combination of infrared spectroscopy, X-ray photoelectron spectroscopy and density functional theory has been used to investigate the adsorption behavior of glycine at the Ge(100) ? 2 × 1 surface under ultrahigh vacuum conditions. Comparison of experimental and simulated IR spectra indicates that at 310 K, glycine adsorbs on Ge(100) ? 2 × 1 via O–H dissociation, with some fraction of the products also forming an N dative bond to a neighboring germanium atom. O–Ge dative bonding is not observed. As coverage increases, the surface concentration of the monodentate O–H dissociated adduct increases, while that of the N dative-bonded species appears constant. XPS data support and clarify the IR findings and reveal new insights, including the presence at higher coverage of a minor product that has undergone dual O–H and N–H dissociation. These findings are supported by the calculated energy diagrams, which indicate that the reaction of a glycine molecule on the Ge(100) ? 2 × 1 surface via O–H dissociation and interdimer N dative bonding is both kinetically and thermodynamically favorable and that N–H dissociation of this adduct is feasible at room temperature given incomplete thermal accommodation along the reaction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号