首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The effect of the position of the inversion point within the layer on the critical values of the Rayleigh number and the amplitudes of the rectangular-cell convective flows is numerically investigated. The monotonic instability of the mechanical equilibrium of the fluid with respect to small perturbations periodic along the layer is studied by the linearization method. The Lyapunov-Schmidt method is used to construct the secondary steady convective flows. The applicability of these methods in incompressible fluid stability problems was demonstrated in [8–10]. The calculations show that, starting from a certain value of the parameter , the branching is subcritical for any cell side ratio and a fixed wave vector modulus. For smaller values of the nature of the branching depends on the cell side ratio. This points to subcritical branching and hysteresis effects in those cases in which the periodicity of the perturbations is determined by external factors (corrugation of the boundary, spatially periodic temperature modulation, etc.). It is noted that the rectangular convection amplitude tends to zero when the cell side ratio tends to 3, the value at which hexagonal cellular convection is possible.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 43–49, January–February, 1989.The author wishes to thank V. I. Yudovich for his interest and useful advice and the participants in the Rostov State University Computational Mathematics Department's Scientific Seminar for discussing the results.  相似文献   

2.
We examine the case when equally sized small moons arrange themselves on the vertices of a regular n-gon for n 7. For n 4, there are at least 3 pure imaginary characteristic exponents, each of which has multiplicity = 1, a surprising result that makes it possible to apply the Lyapunov center theorem to verify the existence of some periodic perturbations. For sufficiently large n, when the regular n-gon is the unique central configuration, the number of families of periodic perturbations is at least equal to 2n – (n + 1)/4, where x is the greatest integer less than or equal to x.  相似文献   

3.
The electrical charging of capillary jets has a strong influence on their stability [1–10]. Well-known theoretical studies have been devoted to the linear [1–6], weakly linear [7], or finite-amplitude [10] stability of such jets in a constant electric field. In the present paper, an investigation is made in the framework of the full nonlinear equations. The main attention is devoted to effects associated with allowance for a time-variable electric field. It is shown that a sharp decrease of the surface charge may lead to an appreciable decrease in the size of the satellite droplets; allowance for the long-wavelength background also leads to a decrease in the size of the satellite droplets. In contrast, a sharp increase of the surface charge increases the relative contribution of the satellite droplets. At the same time, introduction of small-scale background perturbations can lead to a decrease in the contribution of the fine satellite droplets and to a weakening of their reaction to a rapidly increasing electric field. It is shown that the degree of monodisperseness can be increased by a relatively slowly varying electric field. An averaged effect of an electric field that varies rapidly in time is found. Appreciable increase of the initial perturbation amplitude in the case of a periodically varying electric field can lead to an appreciable increase in the degree of monodisperseness. The introduction of short-wavelength perturbations in a periodic electric field with large amplitude of the pulsations can lead to disappearance of the satellite droplets.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 55–62, March–April, 1991.  相似文献   

4.
This is a further study of the set of homoclinic solutions (i.e., nonzero solutions asymptotic to 0 as ¦x¦) of the reversible Hamiltonian systemu iv +Pu +u–u 2=0. The present contribution is in three parts. First, rigorously for P –2, it is proved that there is a unique (up to translation) homoclinic solution of the above system, that solution is even, and on the zero-energy surface its orbit coincides with the transverse intersection of the global stable and unstable manifolds. WhenP=–2 the origin is a node on its local stable and unstable manifolds, and whenP(–2,2) it is a focus. Therefore we can infer, rigorously, from the discovery by Devaney of a Smale horseshoe in the dynamics on the zero energy set, there are infinitely many distinct infinite families of homoclinic solutions forP(–2, –2+) for some>0. Buffoni has shown globally that there are infinitely many homoclinic solutions for allP(–2,0], based on a different approach due to Champneys and Toland. Second, numerically, the development of the set of symmetric homoclinic solutions is monitored asP increases fromP=–2. It is observed that two branches extend fromP=–2 toP=+2 where their amplitudes are found to converge to 0 asP 2. All other symmetric solution branches are in the form of closed loops with a turning point betweenP=–2 andP=+2. Numerically it is observed that each such turning point is accompanied by, though not coincident with, the bifurcation of a branch of nonsymmetrical homoclinic orbits, which can, in turn, be followed back toP=–2. Finally, heuristic explanations of the numerically observed phenomena are offered in the language of geometric dynamical systems theory. One idea involves a natural ordering of homoclinic orbits on the stable and unstable manifolds, given by the Horseshoe dynamics, and goes some way to accounting for the observed order (in terms ofP-values) of the occurrence of turning points. The near-coincidence of turning and asymmetric bifurcation points is explained in terms of the nontransversality of the intersection of the stable and unstable manifolds in the zero energy set on the one hand, and the nontransversality of the intersection of the same manifolds with the symmetric section in 4 on the other. Some conjectures based on present understanding are recorded.  相似文献   

5.
The dynamics of an analytic reversible vector field (X,) is studied in with one real parameter close to 0; X=0 is a fixed point. The differential Dx (0,0) generates an oscillatory dynamics with a frequency of order 1—due to two simple, opposite eigenvalues lying on the imaginary axis—and it also generates a slow dynamics which changes from a hyperbolic type—eigenvalues are —to an elliptic type—eigenvalues are —as passes trough 0. The existence of reversible homoclinic connections to periodic orbits is known for such vector fields. In this paper we study a particular subclass of such vector fields, obtained by small reversible perturbations of the normal form. We give an explicit condition on the perturbation, generically satisfied, which prevents the existence of a homoclinic connections to 0 for the perturbed system. The normal form system of any order admits a reversible homoclinic connection to 0, which then does not survive under perturbation of higher order. It will be seen that normal form essentially decouples the hyperbolic and elliptic part of the linearization to any chosen algebraic order. However, this decoupling does not persist arbitrary reversible perturbation, which finally causes the appearance of small amplitude oscillations.  相似文献   

6.
The stability of a rotating dust cylinder against perturbations located in the plane perpendicular to the axis of rotation is investigated. It is shown that a homogeneous rotating cylinder containing a weak inhomogeneity is stable against such perturbations. A weakly inhomogeneous cylinder with opposite streams of equal density is unstable for thel=2 mode in the case of a perturbation of the formei(l–t), when the density increases radially. The instability of a system consisting of a homogeneous rotating dust cylinder in a hot homogeneous medium is determined. It is shown that the maximum growth rate corresponds tol = 2 when the density of a cold cylinder is not negligible in comparison with the density of the medium. In the opposite case, the maximum growth rate shifts toward l=3. An attempt is made to associate the existence of the maximum growth rate for l=2 with the presence of two spiral arms in most galaxies. It is shown that, when the longitudinal temperature is high enough, a rotating cylinder which is bounded in the radial direction is stable against arbitrary perturbations.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol.10, No. 3, pp. 3–11, May–June, 1969.  相似文献   

7.
The behavior of perturbations of a steady cylindrical front of arbitrary amplitude is investigated numerically. A calculation algorithm is developed on the basis of the well-known boundary integral equation method [7]. The conclusion [5] concerning the stability of the front in the case of an internal supply of medium for perturbations of arbitrary amplitude is confirmed. In the case of an external supply of medium (in the direction of decreasing radial coordinate) the instability of the front and the formation of radial low-viscosity fingers is demonstrated. The method proposed can easily be modified to permit the calculation of the motion of free surfaces and interfaces in chemically inert high-viscosity media. In this connection, it can be used for numerically modeling the flow of plastic and glass melts.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 3–10, September–October, 1991.  相似文献   

8.
The onedimensional problem of the propagation of a perturbation front from a point instantaneous source for transport processes with spatial–temporal nonlocality is considered. A class of nonlocality kernels with a singularity of the form t–1 for small times is used. The front propagation speed v is calculated and an expression for perturbations in the vicinity of the front is derived in the form of an asymptotic series in powers of the parameter = t – xv–1.  相似文献   

9.
The article discusses transverse vibrations of finite amplitude in an electron-ion ring. Far from the region of linear resonances, an equation is obtained for slowly varying amplitudes, and the conditions are found for the excitation of instability of the negative pressure type. Near the lower boundary of the region of linear instability, the conditions are found under which nonlinearity breaks down the stability of the vibrations with finite amplitudes.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 170–172, May–June, 1974.The author is indebted to B. V. Chirikov for his evaluation of the results of the work.  相似文献   

10.
The problem about small perturbations is solved explicitly. An investigation of the behavior of the solution as t shows its boundedness in a weak potential metric. Meanwhile, the perturbation vector of the free boundary of the ellipse grows without limit with time.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 53–62, July–August, 1971.The author is grateful to L. V. Ovsyannikov and R. M. Garipov for discussing the research.  相似文献   

11.
The problem of linear stability of axially symmetric steady-state flows of an ideal incompressible fluid in a magnetic field is studied. A necessary and sufficient condition of stability of these flows with respect to perturbations of the same symmetry type is obtained by the direct Lyapunov method. This condition represents a generalization of the well-known Rayleigh criterion [3, 4] of centrifugal stability of rotating streams to the magnetohydrodynamic case. Two-sided exponential estimates of the perturbation growth are derived. A class of the most rapidly growing perturbations is identified and exact formulas for determining their growth rate are obtained. The corresponding exponents are calculated using the steady flow parameters and initial data for the perturbation field. From the mathematical point of view, the results of the present paper are preliminary in character, since the theorems of existence of the solutions of the problem in question have not been proved.Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 19–25, November–December, 1995.  相似文献   

12.
A numerical calculation is made which describes the conversion into a T-layer of a finite perturbation in electrical conductivity imposed on a one-dimensional supersonic flow of a compressible medium for a finite value of the magnetic Reynolds number. The development of the injected perturbation is significantly affected by the magnetic Reynolds number of the unperturbed flow, and to each value of this number there corresponds a particular boundary region in which the perturbation is taken up by the magnetic field into an induced T-layer. The stability is investigated in the linear approximation for a minimal perturbation, and the dispersion equation is solved with allowance for gradients in the unperturbed parameters. It is shown that an overheating instability can arise in the system and lead to the formation of a T-layer.Translated from Zhurnal Prikladnoi Mekhaniki i Teknicheskoi Fiziki, No. 3, pp. 3–9, May–June, 1973.The authors thank L. M. Degtyarev, L. A. Zaklyaz'minskii, and A. P. Favorskii for useful discussions and advice during the completion of this work.  相似文献   

13.
A study is made of the problem of the propagation of infinitesimally small perturbations in a gas stream moving in a channel of variable cross section when the flow cannot be regarded as isentropic and irrotational. The solution is found in the framework of the linear theory of the flow of an ideal gas and the quasi-one-dimensional hydraulic approximation for the steady regime. For irrotational and isentropic perturbations in a nozzle, this problem was considered in [1–4]. In [1], the problem is generalized to take into account entropy perturbations in the nozzle for the case of longitudinal oscillations. The present paper treats arbitrary modes in a nozzle and takes into account not only entropy but also vorticity perturbations in the moving stream. For each of the three perturbation types — acoustic, entropy, and vorticity — the solutions are expanded in series in cylindrical functions. It is shown that in the considered approximation each oscillation mode can be analyzed independently of the others. In the special case of flow in a Laval nozzle, the concept of impedance (admittance), which is widely used in acoustics, is generalized to take into account entropy and vorticity perturbations. The contribution to the flow dynamics of the acoustic, entropy, and vorticity perturbations is estimated numerically for longitudinal and transverse modes.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 91–98, January–February, 1982.  相似文献   

14.
Under small external perturbations, the initial stage of the laminar into turbulent flow transition process in boundary layers is the development of natural oscillations, Tolman-Schlichting waves, which are described by the linear theory of hydrodynamic stability. Subsequent nonlinear processes start to appear in a sufficiently narrow band of relative values of the perturbation amplitudes (1–2% of the external flow velocity) and progress quite stormily. Hence, the initial linear stage of relatively slow development of perturbations is governing, in a known sense, in the complete transition process. In particular, the location of the transition point depends, to a large extent, on the spectrum composition and intensity of the perturbations in the boundary layer, which start to develop according to linear theory laws, resulting in the long run in destruction of the laminar flow mode. In its turn, the initial intensity and spectrum composition of the Tolman-Schlichting waves evidently depend on the corresponding characteristics of the different external perturbations generating these waves. The significant discrepancy in the data of different authors on the transition Reynolds number in the boundary layer on a flat plate [1–4] is probably explained by the difference in the composition of the small perturbing factors (which have not, unfortunately, been fully checked out by far). Moreover, it is impossible to expect that all kinds of external perturbations will be transformed identically into the natural boundary-layer oscillations. The relative role of external perturbations of different nature is apparently not identical in the Tolman-Schlichting wave generation process. However, how the boundary layer reacts to small external perturbations, under what conditions and in what way do external perturbations excite Tolman-Schlichting waves in the boundary layer have practically not been investigated. The importance of these questions in the solution of the problem of the passage to turbulence and in practical applications has been emphasized repeatedly recently [5, 6], Only the first steps towards their solution have been taken at this time [4, 7–10], Out of all the small perturbing factors under the real conditions of the majority of experiments to investigate the flow stability and transition in the case of smooth polished walls, three are apparently most essential, viz.: the turbulence of the external flow, acoustic perturbations, and model vibrations. In principle, all possible mechanisms for converting the energy of these perturbations into Tolman-Schlichting waves can be subdivided into two classes (excluding the nonlinear interactions which are not examined here): 1) distributed wave generation in the boundary layer; and 2) localized wave generation at the leading edge of the streamlined model. Among the first class is both the possibility of the direct transformation of the external flow perturbations into Tolman-Schlichting waves through the boundary-layer boundary, and wave excitation because of the active vibrations of the model wall. Among the second class are all possible mechanisms for the conversion of acoustic or vortical perturbations, as well as the vibrations of the streamlined surface, into Tolman-Schlichting waves, which occurs in the area of the model leading edge.Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 5, pp. 85–94, September–October, 1978.  相似文献   

15.
The paper reports results of numerical—experimental investigation of the hydroelastic process in a polyimide pipeline filled with a fluid. The propagation of small perturbations in the fluid is considered in an acoustic approximation based on wave equations. The equations are integrated using the method of characteristics and a two–layer difference scheme. The elastic problem is solved by the finite element method and the Newmark difference –method. The stress—strain state of the pipeline is defined by a superposition of fast rod modes of motion and slow shell modes of motion. Satisfactory agreement between calculated and experimental data is obtained.  相似文献   

16.
Within the widely popularized statistical model of turbulence, in which the source of the turbulent energy is an external random force such as the Gaussian white noise, a computation is made of the effective viscosity characterizing the response of the turbulent fluid to the external perturbation. The method used in order to calculate the effective viscosity is that of the renormalization group, which makes it possible, by starting from the lower approximation in the theory of perturbations, to find the sum of a certain infinite subsequence of the series in the theory of perturbations. The expression obtained for the effective viscosity coincides in the inertial interval with the Kolmogorov power law, and gives a dependence different from the power dependence in the region of incomplete self-similarity. The main result of the study is to illustrate the possibility of describing the multimode cascade processes characteristic of developed hydrodynamic turbulence within the theory of perturbations, improved by means of the method of the renormalization group.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 29–36, July–August, 1987.The author wishes to express his gratitude to S. S. Moiseev, V. I. Tatarskii, and A. M. Yaglom for discussions and critical observations.  相似文献   

17.
G. V. Kireiko 《Fluid Dynamics》1984,19(6):1001-1004
The investigation of the occurrence of a transition from the laminar to the turbulent flow regime in weak polymer solutions is of great practical interest. Experimental data indicate both an increase in flow stability and an occurrence of early turbulence [1]. Paper [2] explains the discrepancy in the experimental data for the numerical investigation of the first-mode symmetric perturbations, which are unstable for a Newtonian fluid. Paper [3] shows that other modes also become unstable in the case of the flow of a viscoelastic Maxwellian fluid in a channel. These features of the hydrodynamic stability of viscoelastic fluids indicate a significant rearrangement of the small perturbation spectrum. In the present paper, the perturbation spectrum for plane-parallel flows of viscoelastic Oldroyd and Maxwellian fluids is investigated at small Reynolds numbers, and at large and small wave numbers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 164–167, November–December, 1984.  相似文献   

18.
Equations are obtained for two-dimensional transonic adiabatic (nonisoenergetic and nonisoentropic) vortex flows of an ideal gas, using the natural coordinates (=const is the family of streamlines, and =const is the family of lines orthogonal to them). It is not required that the transonic gas flow be close to a uniform sonic flow (the derivation is given without estimates). Solutions are found for equations describing vortex flows inside a Laval nozzle and near the sonic boundary of a free stream.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 105–109, September–October, 1973.  相似文献   

19.
The growth of two-dimensional disturbances generated in a supersonic (M = 6) boundary layer on a flat plate by a periodic perturbation of the injection/suction type is investigated on the basis of a numerical solution of the Navier-Stokes equations. For small initial perturbation amplitudes, the second-mode growth rate obtained from the numerical modeling coincides with the growth rate calculated using linear theory with account for the non-parallelism of the main flow. Calculations performed for large initial perturbation amplitudes reveal the nonlinear dynamics of the perturbation growth downstream, with rapid growth of the higher multiple harmonics.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, 2004, pp. 33–44. Original Russian Text Copyright © 2004 by Egorov, Sudakov, Fedorov.  相似文献   

20.
A self-similar solution of the Navier-Stokes equations describing steady-state axisymmetric viscous incompressible fluid flow in a half-space is investigated. The motion is induced by sources or sinks distributed over a vertical axis with a constant density. The horizontal plane bounding the fluid is a free surface. It is found that in the presence of sources a solution of the above type exists and is unique for any value of the Reynolds numberR > 0, but in the case of sinks only on the interval –2 R < 0. The results of calculating the self-similar solutions are presented. The asymptotics of the solutions are found asR 0 andR .Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 53–65, March–April, 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号